18 research outputs found
Design and implementation of a Multi-Agent Planning System
This work introduces the design and implementation of a Multi-Agent Planning framework, in which a set of agents work jointly in order to devise a course of action to solve a certain planning problem.Torreño Lerma, A. (2011). Design and implementation of a Multi-Agent Planning System. http://hdl.handle.net/10251/15358Archivo delegad
Cooperative planning in multi-agent systems
Tesis por compendio[EN] Automated planning is a centralized process in which a single planning entity, or agent, synthesizes a course of action, or plan, that satisfies a desired set of goals from an initial situation. A Multi-Agent System (MAS) is a distributed system where a group of autonomous agents pursue their own goals in a reactive, proactive and social way.
Multi-Agent Planning (MAP) is a novel research field that emerges as the integration of automated planning in MAS. Agents are endowed with planning capabilities and their mission is to find a course of action that attains the goals of the MAP task. MAP generalizes the problem of automated planning in domains where several agents plan and act together by combining their knowledge, information and capabilities.
In cooperative MAP, agents are assumed to be collaborative and work together towards the joint construction of a competent plan that solves a set of common goals. There exist different methods to address this objective, which vary according to the typology and coordination needs of the MAP task to solve; that is, to which extent agents are able to make their own local plans without affecting the activities of the other agents.
The present PhD thesis focuses on the design, development and experimental evaluation of a general-purpose and domain-independent resolution framework that solves cooperative MAP tasks of different typology and complexity. More precisely, our model performs a multi-agent multi-heuristic search over a plan space. Agents make use of an embedded search engine based on forward-chaining Partial Order Planning to successively build refinement plans starting from an initial empty plan while they jointly explore a multi-agent search tree. All the reasoning processes, algorithms and coordination protocols are fully distributed among the planning agents and guarantee the preservation of the agents' private information.
The multi-agent search is guided through the alternation of two state-based heuristic functions. These heuristic estimators use the global information on the MAP task instead of the local projections of the task of each agent. The experimental evaluation shows the effectiveness of our multi-heuristic search scheme, obtaining significant results in a wide variety of cooperative MAP tasks adapted from the benchmarks of the International Planning Competition.[ES] La planificación automática es un proceso centralizado en el que una única entidad de planificación, o agente, sintetiza un curso de acción, o plan, que satisface un conjunto deseado de objetivos a partir de una situación inicial. Un Sistema Multi-Agente (SMA) es un sistema distribuido en el que un grupo de agentes autónomos persiguen sus propias metas de forma reactiva, proactiva y social.
La Planificación Multi-Agente (PMA) es un nuevo campo de investigación que surge de la integración de planificación automática en SMA. Los agentes disponen de capacidades de planificación y su propósito consiste en generar un curso de acción que alcance los objetivos de la tarea de PMA. La PMA generaliza el problema de planificación automática en dominios en los que diversos agentes planifican y actúan conjuntamente mediante la combinación de sus conocimientos, información y capacidades.
En PMA cooperativa, se asume que los agentes son colaborativos y trabajan conjuntamente para la construcción de un plan competente que resuelva una serie de objetivos comunes. Existen distintos métodos para alcanzar este objetivo que varían de acuerdo a la tipología y las necesidades de coordinación de la tarea de PMA a resolver; esto es, hasta qué punto los agentes pueden generar sus propios planes locales sin afectar a las actividades de otros agentes.
La presente tesis doctoral se centra en el diseño, desarrollo y evaluación experimental de una herramienta independiente del dominio y de propósito general para la resolución de tareas de PMA cooperativa de distinta tipología y nivel de complejidad. Particularmente, nuestro modelo realiza una búsqueda multi-agente y multi-heurística sobre el espacio de planes. Los agentes hacen uso de un motor de búsqueda embebido basado en Planificación de Orden Parcial de encadenamiento progresivo para generar planes refinamiento de forma sucesiva mientras exploran conjuntamente el árbol de búsqueda multiagente. Todos los procesos de razonamiento, algoritmos y protocolos de coordinación están totalmente distribuidos entre los agentes y garantizan la preservación de la información privada de los agentes.
La búsqueda multi-agente se guía mediante la alternancia de dos funciones heurísticas basadas en estados. Estos estimadores heurísticos utilizan la información global de la tarea de PMA en lugar de las proyecciones locales de la tarea de cada agente. La evaluación experimental muestra la efectividad de nuestro esquema de búsqueda multi-heurístico, que obtiene resultados significativos en una amplia variedad de tareas de PMA cooperativa adaptadas a partir de los bancos de pruebas de las Competición Internacional de Planificación.[CA] La planificació automàtica és un procés centralitzat en el que una única entitat de planificació, o agent, sintetitza un curs d'acció, o pla, que satisfau un conjunt desitjat d'objectius a partir d'una situació inicial. Un Sistema Multi-Agent (SMA) és un sistema distribuït en el que un grup d'agents autònoms persegueixen les seues pròpies metes de forma reactiva, proactiva i social.
La Planificació Multi-Agent (PMA) és un nou camp d'investigació que sorgeix de la integració de planificació automàtica en SMA. Els agents estan dotats de capacitats de planificació i el seu propòsit consisteix en generar un curs d'acció que aconseguisca els objectius de la tasca de PMA. La PMA generalitza el problema de planificació automàtica en dominis en què diversos agents planifiquen i actúen conjuntament mitjançant la combinació dels seus coneixements, informació i capacitats.
En PMA cooperativa, s'assumeix que els agents són col·laboratius i treballen conjuntament per la construcció d'un pla competent que ressolga una sèrie d'objectius comuns. Existeixen diferents mètodes per assolir aquest objectiu que varien d'acord a la tipologia i les necessitats de coordinació de la tasca de PMA a ressoldre; és a dir, fins a quin punt els agents poden generar els seus propis plans locals sense afectar a les activitats d'altres agents.
La present tesi doctoral es centra en el disseny, desenvolupament i avaluació experimental d'una ferramenta independent del domini i de propòsit general per la resolució de tasques de PMA cooperativa de diferent tipologia i nivell de complexitat. Particularment, el nostre model realitza una cerca multi-agent i multi-heuristica sobre l'espai de plans. Els agents fan ús d'un motor de cerca embegut en base a Planificació d'Ordre Parcial d'encadenament progressiu per generar plans de refinament de forma successiva mentre exploren conjuntament l'arbre de cerca multiagent. Tots els processos de raonament, algoritmes i protocols de coordinació estan totalment distribuïts entre els agents i garanteixen la preservació de la informació privada dels agents.
La cerca multi-agent es guia mitjançant l'aternança de dues funcions heurístiques basades en estats. Aquests estimadors heurístics utilitzen la informació global de la tasca de PMA en lloc de les projeccions locals de la tasca de cada agent. L'avaluació experimental mostra l'efectivitat del nostre esquema de cerca multi-heurístic, que obté resultats significatius en una ampla varietat de tasques de PMA cooperativa adaptades a partir dels bancs de proves de la Competició Internacional de Planificació.Torreño Lerma, A. (2016). Cooperative planning in multi-agent systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/65815TESISPremiadoCompendi
Diseño e implementación de un sistema de planificación distribuido
Torreño Lerma, A. (2012). Diseño e implementación de un sistema de planificación distribuido. http://hdl.handle.net/10251/14760.Archivo delegad
FMAP: A platform for the development of distributed multi-agent planning systems
[EN] The development of cooperative Multi-Agent Planning (MAP) solvers in a distributed context encompasses the design and implementation of decentralized algorithms that make use of multi-agent communication protocols. In this paper, we present FMAP, a platform aimed at developing distributed MAP solvers such as MAP-POP, FMAP and MH-FMAP, among others. (C) 2018 Elsevier B.V. All rights reserved.This work is supported by the Spanish MINECO under projects TIN2014-55637-C2-2-R and TIN2017-88476-C2-1-R. The first author was funded by the Spanish SEPE.Torreño Lerma, A.; Sapena Vercher, O.; Onaindia De La Rivaherrera, E. (2018). FMAP: A platform for the development of distributed multi-agent planning systems. Knowledge-Based Systems. 145:166-168. https://doi.org/10.1016/j.knosys.2018.01.013S16616814
Cooperative Distributed Planning through Argumentation
[EN] This paper addresses the problem of solving a cooperative distributed planning (CDP) task through an argumentation-based model. A CDP task involves building a central plan amongst a set of agents who will contribute differently to the joint task based on their abilities and knowledge. In our approach, planning agents accomplish the CDP task resolution through an argumentation-based model that allows them to exchange partial solutions, express opinions on the adequacy of the agents¿ solutions and adapt their own proposals for the benefit of the overall task. Hence, the construction of the joint plan is coordinated via a deliberation dialogue to decide what course of action should be adopted at each stage of the planning process. In this paper, we highlight the role of argumentation for planning tasks that require a coordinated behaviour for their resolution.Onaindia De La Rivaherrera, E.; Sapena Vercher, O.; Torreño Lerma, A. (2010). Cooperative Distributed Planning through Argumentation. International Journal of Artificial Intelligence. 4(10):118-136. http://hdl.handle.net/10251/99676S11813641
Parallel heuristic search in forward partial-order planning
[EN] Most of the current top-performing planners are sequential planners that only handle total-order plans. Although this is a computationally efficient approach, the management of total-order plans restrict the choices of reasoning and thus the generation of flexible plans. In this paper, we present FLAP2, a forward-chaining planner that follows the principles of the classical POCL (Partial-Order Causal-Link
Planning) paradigm. Working with partial-order plans allows FLAP2 to easily manage the parallelism of the plans, which brings several advantages: more flexible executions, shorter plan durations (makespan) and an easy adaptation to support new features like temporal or multi-agent planning. However, one of
the limitations of POCL planners is that they require far more computational effort to deal with the interactions that arise among actions. FLAP2 minimizes this overhead by applying several techniques that improve its performance: the combination of different state-based heuristics and the use of parallel processes to diversify the search in different directions when a plateau is found. To evaluate the performance of FLAP2, we have made a comparison with four state-of-the-art planners: SGPlan, YAHSP2, Temporal Fast Downward and OPTIC. Experimental results show that FLAP2 presents a very acceptable trade-off between time and quality and a high coverage on the current planning benchmarks.This work has been partially supported by the Spanish MINECO project TIN2014-55637-C2-2-R and cofounded by FEDER.Sapena Vercher, O.; Torreño Lerma, A.; Onaindia De La Rivaherrera, E. (2016). Parallel heuristic search in forward partial-order planning. Knowledge Engineering Review. 31(5):417-428. https://doi.org/10.1017/S0269888916000230S41742831
FLAP: Applying Least-Commitment in Forward-Chaining Planning
In this paper, we present FLAP, a partial-order planner that accurately applies the least-commitment principle that governs traditional partial-order planning. FLAP fully exploits the partial ordering among actions of a plan and hence it solves more problems than other similar approaches. The search engine of FLAP uses a combination of different state-based heuristics and applies a parallel search technique to diversify the search in different directions when a plateau
is found. In the experimental evaluation, we compare FLAP with OPTIC, LPG-td and TFD, three state-of-the-art nonlinear planners. The results show that FLAP outperforms these planners in terms of number of problems solved; in addition,
the plans of FLAP represent a good trade-off between quality and computational time.This work has been partly supported by the Spanish MICINN under projects Consolider Ingenio 2010 CSD2007-00022 and TIN2011-27652-C03-01, the Valencian Prometeo project II/2013/019.Sapena Vercher, O.; Onaindia De La Rivaherrera, E.; Torreño Lerma, A. (2015). FLAP: Applying Least-Commitment in Forward-Chaining Planning. AI Communications. 28(1):5-20. https://doi.org/10.3233/AIC-140613S52028
A Better-response Strategy for Self-interested Planning Agents
[EN] When self-interested agents plan individually, interactions that prevent them from executing their actions as planned may arise. In these coordination problems, game-theoretic planning can be used to enhance the agents¿ strategic behavior considering the interactions as part of the agents¿ utility. In this work, we define a general-sum game in which interactions such as conflicts and congestions are reflected in the agents¿ utility. We propose a better-response planning strategy that guarantees convergence to an equilibrium joint plan by imposing a tax to agents involved in conflicts. We apply our approach to a real-world problem in which agents are Electric Autonomous Vehicles (EAVs). The EAVs intend to find a joint plan that ensures their individual goals are achievable in a transportation scenario where congestion and conflicting situations may arise. Although the task is computationally hard, as we theoretically prove, the experimental results show that our approach outperforms similar approaches in both performance and solution quality.This work is supported by the GLASS project TIN2014-55637-C2-2-R of the Spanish MINECO and the Prometeo project II/2013/019 funded by the Valencian Government.Jordán, J.; Torreño Lerma, A.; De Weerdt, M.; Onaindia De La Rivaherrera, E. (2018). A Better-response Strategy for Self-interested Planning Agents. Applied Intelligence. 48(4):1020-1040. https://doi.org/10.1007/s10489-017-1046-5S10201040484Aghighi M, Bäckström C (2016) A multi-parameter complexity analysis of cost-optimal and net-benefit planning. In: Proceedings of the Twenty-Sixth International Conference on International Conference on Automated Planning and Scheduling. AAAI Press, London, pp 2–10Bercher P, Mattmüller R (2008) A planning graph heuristic for forward-chaining adversarial planning. In: ECAI, vol 8, pp 921–922Brafman RI, Domshlak C, Engel Y, Tennenholtz M (2009) Planning games. In: IJCAI 2009, Proceedings of the 21st international joint conference on artificial intelligence, pp 73–78Bylander T (1994) The computational complexity of propositional strips planning. Artif Intell 69(1):165–204Chen X, Deng X (2006) Settling the complexity of two-player nash equilibrium. In: 47th annual IEEE symposium on foundations of computer science, 2006. FOCS’06. IEEE, pp 261–272Chien S, Sinclair A (2011) Convergence to approximate nash equilibria in congestion games. Games and Economic Behavior 71(2):315–327de Cote EM, Chapman A, Sykulski AM, Jennings N (2010) Automated planning in repeated adversarial games. In: 26th conference on uncertainty in artificial intelligence (UAI 2010), pp 376–383Dunne PE, Kraus S, Manisterski E, Wooldridge M (2010) Solving coalitional resource games. Artif Intell 174(1):20–50Fabrikant A, Papadimitriou C, Talwar K (2004) The complexity of pure nash equilibria. In: Proceedings of the thirty-sixth annual ACM symposium on theory of computing, STOC ’04, pp 604–612Friedman JW, Mezzetti C (2001) Learning in games by random sampling. J Econ Theory 98(1):55–84Ghallab M, Nau D, Traverso P (2004) Automated planning: theory & practice. ElsevierGoemans M, Mirrokni V, Vetta A (2005) Sink equilibria and convergence. In: Proceedings of the 46th annual IEEE symposium on foundations of computer science, FOCS ’05, pp 142–154Hadad M, Kraus S, Hartman IBA, Rosenfeld A (2013) Group planning with time constraints. Ann Math Artif Intell 69(3):243–291Hart S, Mansour Y (2010) How long to equilibrium? the communication complexity of uncoupled equilibrium procedures. Games and Economic Behavior 69(1):107–126Helmert M (2003) Complexity results for standard benchmark domains in planning. Artif Intell 143(2):219–262Helmert M (2006) The fast downward planning system. J Artif Intell Res 26(1):191–246Jennings N, Faratin P, Lomuscio A, Parsons S, Wooldrige M, Sierra C (2001) Automated negotiation: prospects, methods and challenges. Group Decis Negot 10(2):199–215Johnson DS, Papadimtriou CH, Yannakakis M (1988) How easy is local search? J Comput Syst Sci 37 (1):79–100Jonsson A, Rovatsos M (2011) Scaling up multiagent planning: a best-response approach. In: Proceedings of the 21st international conference on automated planning and scheduling, ICAPSJordán J, Onaindía E (2015) Game-theoretic approach for non-cooperative planning. In: 29th AAAI conference on artificial intelligence (AAAI-15), pp 1357–1363McDermott D, Ghallab M, Howe A, Knoblock C, Ram A, Veloso M, Weld D, Wilkins D (1998) PDDL: the planning domain definition language. Yale Center for Computational Vision and Control, New HavenMilchtaich I (1996) Congestion games with player-specific payoff functions. Games and Economic Behavior 13(1):111–124Monderer D, Shapley LS (1996) Potential games. Games and Economic Behavior 14(1):124–143Nigro N, Welch D, Peace J (2015) Strategic planning to implement publicly available ev charching stations: a guide for business and policy makers. Tech rep, Center for Climate and Energy SolutionsNisan N, Ronen A (2007) Computationally feasible vcg mechanisms. J Artif Intell Res 29(1):19–47Nisan N, Roughgarden T, Tardos E, Vazirani VV (2007) Algorithmic game theory. Cambridge University Press, New YorkPapadimitriou CH (1994) On the complexity of the parity argument and other inefficient proofs of existence. J Comput Syst Sci 48(3):498–532Richter S, Westphal M (2010) The LAMA planner: guiding cost-based anytime planning with landmarks. J Artif Intell Res 39(1):127–177Rosenthal RW (1973) A class of games possessing pure-strategy nash equilibria. Int J Game Theory 2(1):65–67Shoham Y, Leyton-Brown K (2009) Multiagent systems: algorithmic, game-theoretic, and logical foundations. Cambridge University PressTorreño A, Onaindia E, Sapena Ó (2014) A flexible coupling approach to multi-agent planning under incomplete information. Knowl Inf Syst 38(1):141–178Torreño A, Onaindia E, Sapena Ó (2014) FMAP: distributed cooperative multi-agent planning. Appl Intell 41(2):606– 626Torreño A, Sapena Ó, Onaindia E (2015) Global heuristics for distributed cooperative multi-agent planning. In: ICAPS 2015. 25th international conference on automated planning and scheduling. AAAI Press, pp 225–233Von Neumann J, Morgenstern O (2007) Theory of games and economic behavior. Princeton University Pressde Weerdt M, Bos A, Tonino H, Witteveen C (2003) A resource logic for multi-agent plan merging. Ann Math Artif Intell 37(1):93–130Wooldridge M, Endriss U, Kraus S, Lang J (2013) Incentive engineering for boolean games. Artif Intell 195:418–43
FMAP: Distributed Cooperative Multi-Agent Planning
This paper proposes FMAP (Forward Multi-Agent Planning), a fully-distributed multi-agent planning method that integrates planning and coordination. Although FMAP is specifically aimed at solving problems that require cooperation among agents, the flexibility of the domain-independent planning model allows FMAP to tackle multi-agent planning tasks of any type. In FMAP, agents jointly explore the plan space by building up refinement plans through a complete and flexible forward-chaining partial-order planner. The search is guided by h D T G , a novel heuristic function that is based on the concepts of Domain Transition Graph and frontier state and is optimized to evaluate plans in distributed environments. Agents in FMAP apply an advanced privacy model that allows them to adequately keep private information while communicating only the data of the refinement plans that is relevant to each of the participating agents. Experimental results show that FMAP is a general-purpose approach that efficiently solves tightly-coupled domains that have specialized agents and cooperative goals as well as loosely-coupled problems. Specifically, the empirical evaluation shows that FMAP outperforms current MAP systems at solving complex planning tasks that are adapted from the International Planning Competition benchmarks.This work has been partly supported by the Spanish MICINN under projects Consolider Ingenio 2010 CSD2007-00022 and TIN2011-27652-C03-01, the Valencian Prometeo project II/2013/019, and the FPI-UPV scholarship granted to the first author by the Universitat Politecnica de Valencia.Torreño Lerma, A.; Onaindia De La Rivaherrera, E.; Sapena Vercher, O. (2014). FMAP: Distributed Cooperative Multi-Agent Planning. Applied Intelligence. 41(2):606-626. https://doi.org/10.1007/s10489-014-0540-2S606626412Benton J, Coles A, Coles A (2012) Temporal planning with preferences and time-dependent continuous costs. In: Proceedings of the 22nd international conference on automated planning and scheduling (ICAPS). AAAI, pp 2–10Borrajo D. (2013) Multi-agent planning by plan reuse. In: Proceedings of the 12th international conference on autonomous agents and multi-agent systems (AAMAS). IFAAMAS, pp 1141–1142Boutilier C, Brafman R (2001) Partial-order planning with concurrent interacting actions. J Artif Intell Res 14(105):136Brafman R, Domshlak C (2008) From one to many: planning for loosely coupled multi-agent systems. In: Proceedings of the 18th international conference on automated planning and scheduling (ICAPS). AAAI, pp 28–35Brenner M, Nebel B (2009) Continual planning and acting in dynamic multiagent environments. J Auton Agents Multiagent Syst 19(3):297–331Bresina J, Dearden R, Meuleau N, Ramakrishnan S, Smith D, Washington R (2002) Planning under continuous time and resource uncertainty: a challenge for AI. In: Proceedings of the 18th conference on uncertainty in artificial intelligence (UAI). Morgan Kaufmann, pp 77–84Cox J, Durfee E (2009) Efficient and distributable methods for solving the multiagent plan coordination problem. Multiagent Grid Syst 5(4):373–408Crosby M, Rovatsos M, Petrick R (2013) Automated agent decomposition for classical planning. In: Proceedings of the 23rd international conference on automated planning and scheduling (ICAPS). AAAI, pp 46–54Dimopoulos Y, Hashmi MA, Moraitis P (2012) μ-satplan: Multi-agent planning as satisfiability. Knowl-Based Syst 29:54–62Fikes R, Nilsson N (1971) STRIPS: a new approach to the application of theorem proving to problem solving. Artif Intell 2(3):189–208Gerevini A, Haslum P, Long D, Saetti A, Dimopoulos Y (2009) Deterministic planning in the fifth international planning competition: PDDL3 and experimental evaluation of the planners. Artif Intell 173(5-6):619–668Ghallab M, Nau D, Traverso P (2004) Automated planning. Theory and practice. Morgan KaufmannGünay A, Yolum P (2013) Constraint satisfaction as a tool for modeling and checking feasibility of multiagent commitments. Appl Intell 39(3):489–509Helmert M (2004) A planning heuristic based on causal graph analysis. In: Proceedings of the 14th international conference on automated planning and scheduling ICAPS. AAAI, pp 161–170Hoffmann J, Nebel B (2001) The FF planning system: fast planning generation through heuristic search. J Artif Intell Res 14:253–302Jannach D, Zanker M (2013) Modeling and solving distributed configuration problems: a CSP-based approach. IEEE Trans Knowl Data Eng 25(3):603–618Jonsson A, Rovatsos M (2011) Scaling up multiagent planning: a best-response approach. In: Proceedings of the 21st international conference on automated planning and scheduling (ICAPS). AAAI, pp 114–121Kala R, Warwick K (2014) Dynamic distributed lanes: motion planning for multiple autonomous vehicles. Appl Intell:1–22Koehler J, Ottiger D (2002) An AI-based approach to destination control in elevators. AI Mag 23(3):59–78Kovacs DL (2011) Complete BNF description of PDDL3.1. Technical reportvan der Krogt R (2009) Quantifying privacy in multiagent planning. Multiagent Grid Syst 5(4):451–469Kvarnström J (2011) Planning for loosely coupled agents using partial order forward-chaining. In: Proceedings of the 21st international conference on automated planning and scheduling (ICAPS). AAAI, pp 138–145Lesser V, Decker K, Wagner T, Carver N, Garvey A, Horling B, Neiman D, Podorozhny R, Prasad M, Raja A et al (2004) Evolution of the GPGP/TAEMS domain-independent coordination framework. Auton Agents Multi-Agent Syst 9(1–2):87–143Long D, Fox M (2003) The 3rd international planning competition: results and analysis. J Artif Intell Res 20:1–59Nissim R, Brafman R, Domshlak C (2010) A general, fully distributed multi-agent planning algorithm. In: Proceedings of the 9th international conference on autonomous agents and multiagent systems (AAMAS). IFAAMAS, pp 1323–1330O’Brien P, Nicol R (1998) FIPA - towards a standard for software agents. BT Tech J 16(3):51–59Öztürk P, Rossland K, Gundersen O (2010) A multiagent framework for coordinated parallel problem solving. Appl Intell 33(2):132–143Pal A, Tiwari R, Shukla A (2013) Communication constraints multi-agent territory exploration task. Appl Intell 38(3):357–383Richter S, Westphal M (2010) The LAMA planner: guiding cost-based anytime planning with landmarks. J Artif Intell Res 39(1):127–177de la Rosa T, García-Olaya A, Borrajo D (2013) A case-based approach to heuristic planning. Appl Intell 39(1):184–201Sapena O, Onaindia E (2008) Planning in highly dynamic environments: an anytime approach for planning under time constraints. Appl Intell 29(1):90–109Sapena O, Onaindia E, Garrido A, Arangú M (2008) A distributed CSP approach for collaborative planning systems. Eng Appl Artif Intell 21(5):698–709Serrano E, Such J, Botía J, García-Fornes A (2013) Strategies for avoiding preference profiling in agent-based e-commerce environments. Appl Intell:1–16Smith D, Frank J, Jónsson A (2000) Bridging the gap between planning and scheduling. Knowl Eng Rev 15(1):47–83Such J, García-Fornes A, Espinosa A, Bellver J (2012) Magentix2: a privacy-enhancing agent platform. Eng Appl Artif Intell:96–109Tonino H, Bos A, de Weerdt M, Witteveen C (2002) Plan coordination by revision in collective agent based systems. Artif Intell 142(2):121–145Torreño A, Onaindia E, Sapena O (2012) An approach to multi-agent planning with incomplete information. In: Proceedings of the 20th European conference on artificial intelligence (ECAI), vol 242. IOS Press, pp 762–767Torreño A, Onaindia E, Sapena O (2014) A flexible coupling approach to multi-agent planning under incomplete information. Knowl Inf Syst 38(1):141–178Van Der Krogt R, De Weerdt M (2005) Plan repair as an extension of planning. In: Proceedings of the 15th international conference on automated planning and scheduling (ICAPS). AAAI, pp 161–170de Weerdt M, Clement B (2009) Introduction to planning in multiagent systems. Multiagent Grid Syst 5(4):345– 355Yokoo M, Durfee E, Ishida T, Kuwabara K (1998) The distributed constraint satisfaction problem: formalization and algorithms. IEEE Trans Knowl Data Eng 10(5):673–685Zhang J, Nguyen X, Kowalczyk R (2007) Graph-based multi-agent replanning algorithm. In: Proceedings of the 6th international joint conference conference on autonomous agents and multiagent systems (AAMAS). IFAAMAS, pp 798–80