27 research outputs found

    Uso de derivados de colofonia como aditivos sostenibles en biopolímeros de almidón termoplástico (TPS)

    Full text link
    [ES] La Tesis Doctoral investigó el uso de la resina de pino (colofonia o gum rosin, GR) y sus derivados modificados químicamente, como aditivos sostenibles de biopolímeros basados en almidón termoplástico. El trabajo se dividió en seis secciones de investigación. Dos trabajos previos y cuatro trabajos medulares, cada uno de los cuales constituyeron los objetivos específicos de la investigación. Los trabajos previos permitieron determinar que la resina de pino y derivados pueden ser utilizados tanto en matrices poliméricas sintéticas (policloruro de vinilo, PVC), como en matrices poliméricas biodegradables (una mezcla de poliácido láctico y poli(butilén adipato co-tereftalato - PLA/PBAT). En el caso del PVC, se estudió el efecto de un derivado de colofonia, el trietilén glicol de colofonia (TEGR), como aditivo natural para incrementar la viscosidad en plastisoles basados en PVC. En el caso de estudio con una matriz biodegradable, se usó colofonia sin modificar (GR), como agente de control de tamaño de dominios de PBAT para aumentar la tenacidad de formulaciones basadas en una mezcla de PLA/PBAT. Luego, se estudió el uso de la resina de pino y derivados como aditivos de biopolímeros basados en almidón termoplástico (TPS) y el efecto de las resinas en las diferentes formulaciones de estos materiales. En primera instancia se estudiaron y establecieron las condiciones de procesamiento para obtener un almidón totalmente plastificado (almidón termoplástico - TPS) utilizando mezclas de almidón de maíz plastificado con glicerol y agua; procesadas a diferentes perfiles de temperatura de extrusión. En una siguiente instancia, se estudiaron mezclas de TPS con cinco derivados de resina de colofonia: colofonia sin modificar (GR), colofonia deshidrogenada (RD), colofonia modificada con anhidrido maleico (CM) y dos ésteres de colofonia, un pentaeritritol éster (LF) y un éster de glicerol grado alimenticio (UG). A continuación, se estudió el comportamiento de un material de interés comercial al ser aditivado con derivados de la resina de pino. Para ello, se usó colofonia sin modificar (GR) y dos ésteres de pentaeritritol de colofonia (LF, y UT). La matriz de estudio fue un biopolímero del tipo Mater-Bi (Mater-Bi® NF 866 (Mater-Bi), una mezcla comercial basada en almidón termoplástico (TPS), un poliéster alifático-aromático (polibutilén adipato co-tereftalato) (PBAT) y poly-(ε)-caprolactona (PCL)). Finalmente, se estudiaron los materiales formulados con el material de interés comercial (Mater-Bi) y las resinas y derivados seleccionados (GR, LF y UT) desde un punto de vista microscópico, para determinar a profundidad las interacciones de los componentes del Mater-Bi con cada una de las resinas. Los resultados obtenidos se muestran favorables y prometedores pues demuestran que las resinas de pino y sus derivados son una alternativa viable para ser usados como aditivos naturales en una diversidad de materiales, tanto sintéticos como biobasados y biodegradables. Además, las resinas de pino y colofonia son materiales sostenibles que proviene de fuentes 100% naturales y renovables, por lo que su uso supone una disminución del impacto en el medio ambiente.[CA] La Tesi Doctoral va investigar l'ús de la resina de pi (colofònia o gum rosin, GR) i els seus derivats modificats químicament, com a additius sostenibles de biopolímers basats en midó termoplàstic. El treball es va dividir en sis seccions d'investigació. Dos treballs previs i quatre treballs medul·lars, cadascun dels quals van constituir els objectius específics de la investigació. Els treballs previs van permetre determinar que la resina de pi i derivats poden ser utilitzats tant en matrius polimèriques sintètiques (policlorur de vinil, PVC), com en matrius polimèriques biodegradables (una mescla de poliácido làctic i poli(butilén adipat co-tereftalato - PLA/PBAT). En el cas del PVC, es va estudiar l'efecte d'un derivat de colofònia, el trietilén glicol de colofònia (TEGR), com a additiu natural per a incrementar la viscositat en plastisoles basats en PVC. En el cas d'estudi amb una matriu biodegradable, es va usar colofònia sense modificar (GR), com a agent de control de grandària de dominis de PBAT per a augmentar la tenacitat de formulacions basades en una mescla de PLA/PBAT. Després, es va estudiar l'ús de la resina de pi i derivats com a additius de biopolímers basats en midó termoplàstic (TPS) i l'efecte de les resines en les diferents formulacions d'aquests materials. En primera instància es van estudiar i van establir les condicions de processament per a obtindre un midó totalment plastificat (midó termoplàstic - TPS) utilitzant mescles de midó de dacsa plastificada amb glicerol i aigua; processades a diferents perfils de temperatura d'extrusió. En una següent instància, es van estudiar mescles de TPS amb cinc derivats de resina de colofònia: colofònia sense modificar (GR), colofònia deshidrogenada (RD), colofònia modificada amb anhidrido maleic (CM) i dos èsters de colofònia, un pentaeritritol èster (LF) i un èster de glicerol grau alimentós (UG). A continuació, es va estudiar el comportament d'un materials d'interés comercial en ser aditivado amb derivats de la resina de pi. Per a això, es va usar colofònia sense modificar (GR) i dos èsters de pentaeritritol de colofònia (LF, i UT). La matriu d'estudi va ser un biopolímer del tipus Mater-Bi (Mater-Bi® NF 866 (Mater-Bi), una mescla comercial basada en midó termoplàstic (TPS), un polièster alifàtic-aromàtic (polibutilén adipat co-tereftalato) (PBAT) i poly-(ε)-caprolactona (PCL)). Finalment, es van estudiar els materials formulats d'interés comercial (Mater-Bi) i les resines i derivats seleccionats (GR, LF i UT) des d'un punt de vista microscòpic, per a determinar a profunditat les interaccions dels components del Mater-Bi amb cadascuna de les resines. Els resultats obtinguts es mostren favorables i prometedors perquè demostren que les resines de pi i els seus derivats són una alternativa viable per a ser usats com a additius naturals en una diversitat de materials, tant sintètics com biobasados i biodegradables. A més, les resines de pi i colofònia són materials sostenibles que prové de fonts 100% naturals i renovables, per la qual cosa el seu ús suposa una disminució de l'impacte en el medi ambient.[EN] The Doctoral Thesis investigated the use of pine resin (colophony or gum rosin, GR) and its chemically modified derivatives, as sustainable additives for biopolymers based on thermoplastic starch (TPS). The work was divided into six research sections. Two previous studies and four core studies, each of which constituted the specific objectives of the research. Previous studies made it possible to determine that gum rosin and derivatives can be used both in synthetic polymeric matrices (polyvinyl chloride, PVC) and in biodegradable polymeric matrices (a blend of polyacid lactic acid and poly (butylene adipate co-terephthalate - PLA/PBAT). In the case of PVC, the effect of a rosin derivative, triethylene glycol ester of gum rosin (TEGR), was studied as a natural additive to increase the viscosity in PVC-based plastisols. In the case of a study with a biodegradable matrix, unmodified rosin (GR) was used as a PBAT domain size control agent to increase the toughness of formulations based on a PLA/PBAT blend. Then, the use of gum rosin and derivatives as additives of biopolymers based on thermoplastic starch (TPS) and the effect of the resins in the different formulations of these materials were studied. In the first instance, the processing conditions were studied to obtain a fully plasticized starch (thermoplastic starch - TPS) using mixtures of plasticized corn starch with glycerol and water; processed at different extrusion temperature profiles. In the next instance, blends of TPS with five rosin derivatives were studied: unmodified rosin (GR), dehydrogenated rosin (RD), maleic anhydride-modified rosin (CM) and two rosin esters, a pentaerythritol ester (LF), and a food-grade glycerol ester of gum rosin (UG). Next, the behavior of a commercial interest material when added with derivatives of gum rosin was studied. Unmodified gum rosin (GR) and two pentaerythritol esters of gum rosin (LF and UT) were used. The studied matrix was a Mater-Bi type biopolymer (Mater-Bi® NF 866 (Mater-Bi), a commercial blend based on thermoplastic starch (TPS), an aliphatic-aromatic polyester (polybutylene adipate co-terephthalate) (PBAT ) and poly-(ε)-caprolactone (PCL)). Finally, the formulated materials were studied from a microscopic point of view, to determine in-depth the interactions of the components of Mater-Bi with each of the gum rosin and derivatives resins. The results obtained are favorable and promising as they show that gum rosin and its derivatives are a viable alternative to be used as natural additives in a variety of materials, both synthetic and biobased and biodegradable. In addition, gum rosin and derivatives resins are sustainable materials that come from 100% natural and renewable sources, so their use reduces their impact on the environment.Agradezco a la Secretaría de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT) por el apoyo económico en parte de mis estudios doctorales.Aldas Carrasco, MF. (2021). Uso de derivados de colofonia como aditivos sostenibles en biopolímeros de almidón termoplástico (TPS) [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/171770TESI

    A Deeper Microscopic Study of the Interaction between Gum Rosin Derivatives and a Mater-Bi Type Bioplastic

    Get PDF
    [EN] The interaction between gum rosin and gum rosin derivatives with Mater-Bi type bioplastic, a biodegradable and compostable commercial bioplastic, were studied. Gum rosin and two pentaerythritol esters of gum rosin (Lurefor 125 resin and Unik Tack P100 resin) were assessed as sustainable compatibilizers for the components of Mater-Bi® NF 866 polymeric matrix. To study the influence of each additive in the polymeric matrix, each gum rosin-based additive was compounded in 15 wt % by melt-extrusion and further injection molding process. Then, the mechanical properties were assessed, and the tensile properties and impact resistance were determined. Microscopic analyses were carried out by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and atomic force microscopy with nanomechanical assessment (AFM-QNM). The oxygen barrier and wettability properties were also assayed. The study revealed that the commercial thermoplastic starch is mainly composed of three phases: A polybutylene adipate-co-terephthalate (PBAT) phase, an amorphous phase of thermoplastic starch (TPSa), and a semi-crystalline phase of thermoplastic starch (TPSc). The poor miscibility among the components of the Mater-Bi type bioplastic was confirmed. Finally, the formulations with the gum rosin and its derivatives showed an improvement of the miscibility and the solubility of the components depending on the additive usedThis research was funded by Spanish Ministry of Economy and Competitiveness (MINECO), project: PROMADEPCOL (MAT2017-84909-C2-2-R) and M.P.A. s contract: Juan de la Cierva-Incorporación (FJCI-2017-33536).Aldas-Carrasco, MF.; Rayón, E.; López-Martínez, J.; Arrieta, MP. (2020). A Deeper Microscopic Study of the Interaction between Gum Rosin Derivatives and a Mater-Bi Type Bioplastic. Polymers. 12(1):1-17. https://doi.org/10.3390/polym12010226S117121Keshavarz, T., & Roy, I. (2010). Polyhydroxyalkanoates: bioplastics with a green agenda. Current Opinion in Microbiology, 13(3), 321-326. doi:10.1016/j.mib.2010.02.006Aldas, M., Paladines, A., Valle, V., Pazmiño, M., & Quiroz, F. (2018). Effect of the Prodegradant-Additive Plastics Incorporated on the Polyethylene Recycling. International Journal of Polymer Science, 2018, 1-10. doi:10.1155/2018/2474176Arrieta, M. P., Peponi, L., López, D., & Fernández-García, M. (2018). Recovery of yerba mate (Ilex paraguariensis) residue for the development of PLA-based bionanocomposite films. Industrial Crops and Products, 111, 317-328. doi:10.1016/j.indcrop.2017.10.042Akrami, M., Ghasemi, I., Azizi, H., Karrabi, M., & Seyedabadi, M. (2016). A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydrate Polymers, 144, 254-262. doi:10.1016/j.carbpol.2016.02.035Elfehri Borchani, K., Carrot, C., & Jaziri, M. (2015). Biocomposites of Alfa fibers dispersed in the Mater-Bi® type bioplastic: Morphology, mechanical and thermal properties. Composites Part A: Applied Science and Manufacturing, 78, 371-379. doi:10.1016/j.compositesa.2015.08.023Sessini, V., Arrieta, M. P., Fernández-Torres, A., & Peponi, L. (2018). Humidity-activated shape memory effect on plasticized starch-based biomaterials. Carbohydrate Polymers, 179, 93-99. doi:10.1016/j.carbpol.2017.09.070Arrieta, M., Samper, M., Aldas, M., & López, J. (2017). On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials, 10(9), 1008. doi:10.3390/ma10091008Aldas, M., Ferri, J. M., Lopez‐Martinez, J., Samper, M. D., & Arrieta, M. P. (2019). Effect of pine resin derivatives on the structural, thermal, and mechanical properties of Mater‐Bi type bioplastic. Journal of Applied Polymer Science, 137(4), 48236. doi:10.1002/app.48236Sessini, V., Navarro-Baena, I., Arrieta, M. P., Dominici, F., López, D., Torre, L., … Peponi, L. (2018). Effect of the addition of polyester-grafted-cellulose nanocrystals on the shape memory properties of biodegradable PLA/PCL nanocomposites. Polymer Degradation and Stability, 152, 126-138. doi:10.1016/j.polymdegradstab.2018.04.012Sessini, V., Arrieta, M. P., Raquez, J.-M., Dubois, P., Kenny, J. M., & Peponi, L. (2019). Thermal and composting degradation of EVA/Thermoplastic starch blends and their nanocomposites. Polymer Degradation and Stability, 159, 184-198. doi:10.1016/j.polymdegradstab.2018.11.025Kaseem, M., Hamad, K., & Deri, F. (2012). Thermoplastic starch blends: A review of recent works. Polymer Science Series A, 54(2), 165-176. doi:10.1134/s0965545x1202006xOlivato, J. B., Nobrega, M. M., Müller, C. M. O., Shirai, M. A., Yamashita, F., & Grossmann, M. V. E. (2013). Mixture design applied for the study of the tartaric acid effect on starch/polyester films. Carbohydrate Polymers, 92(2), 1705-1710. doi:10.1016/j.carbpol.2012.11.024Yoshida, Y., & Uemura, T. (1994). Properties and Applications of «Mater-Bi». Biodegradable Plastics and Polymers, 443-450. doi:10.1016/b978-0-444-81708-2.50049-xNainggolan, H., Gea, S., Bilotti, E., Peijs, T., & Hutagalung, S. D. (2013). Mechanical and thermal properties of bacterial-cellulose-fibre-reinforced Mater-Bi® bionanocomposite. Beilstein Journal of Nanotechnology, 4, 325-329. doi:10.3762/bjnano.4.37Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082Morreale, M., Scaffaro, R., Maio, A., & La Mantia, F. P. (2008). Effect of adding wood flour to the physical properties of a biodegradable polymer. Composites Part A: Applied Science and Manufacturing, 39(3), 503-513. doi:10.1016/j.compositesa.2007.12.002Nayak, S. K. (2010). Biodegradable PBAT/Starch Nanocomposites. Polymer-Plastics Technology and Engineering, 49(14), 1406-1418. doi:10.1080/03602559.2010.496397González Seligra, P., Eloy Moura, L., Famá, L., Druzian, J. I., & Goyanes, S. (2016). Influence of incorporation of starch nanoparticles in PBAT/TPS composite films. Polymer International, 65(8), 938-945. doi:10.1002/pi.5127Arrieta, M. P., Samper, M. D., Jiménez-López, M., Aldas, M., & López, J. (2017). Combined effect of linseed oil and gum rosin as natural additives for PVC. Industrial Crops and Products, 99, 196-204. doi:10.1016/j.indcrop.2017.02.009Gutierrez, J., & Tercjak, A. (2014). Natural gum rosin thin films nanopatterned by poly(styrene)-block-poly(4-vinylpiridine) block copolymer. RSC Advances, 4(60), 32024. doi:10.1039/c4ra04296dWilbon, P. A., Chu, F., & Tang, C. (2012). Progress in Renewable Polymers from Natural Terpenes, Terpenoids, and Rosin. Macromolecular Rapid Communications, 34(1), 8-37. doi:10.1002/marc.201200513Rodríguez-García, A., Martín, J. A., López, R., Mutke, S., Pinillos, F., & Gil, L. (2015). Influence of climate variables on resin yield and secretory structures in tapped Pinus pinaster Ait. in central Spain. Agricultural and Forest Meteorology, 202, 83-93. doi:10.1016/j.agrformet.2014.11.023Davis, G., & Song, J. H. (2006). Biodegradable packaging based on raw materials from crops and their impact on waste management. Industrial Crops and Products, 23(2), 147-161. doi:10.1016/j.indcrop.2005.05.004Yadav, B. K., Gidwani, B., & Vyas, A. (2015). Rosin: Recent advances and potential applications in novel drug delivery system. Journal of Bioactive and Compatible Polymers, 31(2), 111-126. doi:10.1177/0883911515601867Butt, H.-J., Cappella, B., & Kappl, M. (2005). Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports, 59(1-6), 1-152. doi:10.1016/j.surfrep.2005.08.003J. Roa, J., Rayon, E., Morales, M., & Segarra, M. (2012). Contact Mechanics at Nanometric Scale Using Nanoindentation Technique for Brittle and Ductile Materials. Recent Patents on Engineering, 6(2), 116-126. doi:10.2174/187221212801227130Hernández‐Fernández, J., Rayón, E., López, J., & Arrieta, M. P. (2019). Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants. Macromolecular Materials and Engineering, 304(11), 1900379. doi:10.1002/mame.201900379Taguet, A., Huneault, M. A., & Favis, B. D. (2009). Interface/morphology relationships in polymer blends with thermoplastic starch. Polymer, 50(24), 5733-5743. doi:10.1016/j.polymer.2009.09.055Zhang, S., He, Y., Lin, Z., Li, J., & Jiang, G. (2019). Effects of tartaric acid contents on phase homogeneity, morphology and properties of poly (butyleneadipate-co-terephthalate)/thermoplastic starch bio-composities. Polymer Testing, 76, 385-395. doi:10.1016/j.polymertesting.2019.04.005Mohammadi Nafchi, A., Moradpour, M., Saeidi, M., & Alias, A. K. (2013). Thermoplastic starches: Properties, challenges, and prospects. Starch - Stärke, 65(1-2), 61-72. doi:10.1002/star.201200201Van Soest, J. J. G., De Wit, D., & Vliegenthart, J. F. G. (1996). Mechanical properties of thermoplastic waxy maize starch. Journal of Applied Polymer Science, 61(11), 1927-1937. doi:10.1002/(sici)1097-4628(19960912)61:113.0.co;2-lZhang, Y., Rempel, C., & Liu, Q. (2014). Thermoplastic Starch Processing and Characteristics—A Review. Critical Reviews in Food Science and Nutrition, 54(10), 1353-1370. doi:10.1080/10408398.2011.636156Yu, J., Gao, J., & Lin, T. (1996). Biodegradable thermoplastic starch. Journal of Applied Polymer Science, 62(9), 1491-1494. doi:10.1002/(sici)1097-4628(19961128)62:93.0.co;2-1Zullo, R., & Iannace, S. (2009). The effects of different starch sources and plasticizers on film blowing of thermoplastic starch: Correlation among process, elongational properties and macromolecular structure. Carbohydrate Polymers, 77(2), 376-383. doi:10.1016/j.carbpol.2009.01.007Sousa, F. M., Costa, A. R. M., Reul, L. T. A., Cavalcanti, F. B., Carvalho, L. H., Almeida, T. G., & Canedo, E. L. (2018). Rheological and thermal characterization of PCL/PBAT blends. Polymer Bulletin, 76(3), 1573-1593. doi:10.1007/s00289-018-2428-5Mittal, V., Akhtar, T., Luckachan, G., & Matsko, N. (2014). PLA, TPS and PCL binary and ternary blends: structural characterization and time-dependent morphological changes. Colloid and Polymer Science, 293(2), 573-585. doi:10.1007/s00396-014-3458-7Arrieta, M. P., López, J., Hernández, A., & Rayón, E. (2014). Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50, 255-270. doi:10.1016/j.eurpolymj.2013.11.009Burgos, N., Martino, V. P., & Jiménez, A. (2013). Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 98(2), 651-658. doi:10.1016/j.polymdegradstab.2012.11.009Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., … Kenny, J. M. (2015). Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polymer Letters, 9(7), 583-596. doi:10.3144/expresspolymlett.2015.55Arrieta, M. P., Peltzer, M. A., López, J., Garrigós, M. del C., Valente, A. J. M., & Jiménez, A. (2014). Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol. Journal of Food Engineering, 121, 94-101. doi:10.1016/j.jfoodeng.2013.08.015Hambleton, A., Fabra, M.-J., Debeaufort, F., Dury-Brun, C., & Voilley, A. (2009). Interface and aroma barrier properties of iota-carrageenan emulsion–based films used for encapsulation of active food compounds. Journal of Food Engineering, 93(1), 80-88. doi:10.1016/j.jfoodeng.2009.01.00

    Study of the Properties of a Biodegradable Polymer Filled with DierentWood Flour Particles

    Full text link
    [EN] Lignocellulosic wood flour particles with three different sizes were used to reinforce Solanyl® type bioplastic in three compositions (10, 20, and 30 wt.%) and further processed by melt-extrusion and injection molding to simulate industrial conditions. The wood flour particles were morphologically and granulometric analyzed to evaluate their use as reinforcing filler. The Fuller method on wood flour particles was successfully applied and the obtained results were subsequently corroborated by the mechanical characterization. The rheological studies allowed observing how the viscosity was affected by the addition of wood flour and to recover information about the processing conditions of the biocomposites. Results suggest that all particles can be employed in extrusion processes (shear rate less than 1000 s¿1 ). However, under injection molding conditions, biocomposites with high percentages of wood flour or excessively large particles may cause an increase in defective injected-parts due to obstruction of the gate in the mold. From a processing point of view and based on the biocomposites performance, the best combination resulted in Solanyl® type biopolymer reinforced with wood flour particles loaded up to 20 wt.% of small and medium particles size. The obtained biocomposites are of interest for injected molding parts for several industrial applications.Parres, F.; Peydro, MA.; Juárez Varón, D.; Arrieta, MP.; Aldas, M. (2020). Study of the Properties of a Biodegradable Polymer Filled with DierentWood Flour Particles. Polymers. 12(12):1-24. https://doi.org/10.3390/polym12122974124121

    New Materials for 3D-Printing Based on Polycaprolactone with Gum Rosin and Beeswax as Additives

    Full text link
    [EN] In this work, different materials for three-dimensional (3D)-printing were studied, which based on polycaprolactone with two natural additives, gum rosin, and beeswax. During the 3D-printing process, the bed and extrusion temperatures of each formulation were established. After, the obtained materials were characterized by mechanical, thermal, and structural properties. The results showed that the formulation with containing polycaprolactone with a mixture of gum rosin and beeswax as additive behaved better during the 3D-printing process. Moreover, the miscibility and compatibility between the additives and the matrix were concluded through the thermal assessment. The mechanical characterization established that the addition of the mixture of gum rosin and beeswax provides greater tensile strength than those additives separately, facilitating 3D-printing. In contrast, the addition of beeswax increased the ductility of the material, which makes the 3D-printing processing difficult. Despite the fact that both natural additives had a plasticizing effect, the formulations containing gum rosin showed greater elongation at break. Finally, Fourier-Transform Infrared Spectroscopy assessment deduced that polycaprolactone interacts with the functional groups of the additives.This research was supported by the Spanish State Agency of Research trough the project MAT2017-84909-C2-2-R and Universidad Politecnica de Valencia-GVA through the project "Development".Pavón-Vargas, CP.; Aldas-Carrasco, MF.; López-Martínez, J.; Ferrándiz Bou, S. (2020). New Materials for 3D-Printing Based on Polycaprolactone with Gum Rosin and Beeswax as Additives. Polymers. 12(2):1-20. https://doi.org/10.3390/polym12020334S120122Zhu, Y., Romain, C., & Williams, C. K. (2016). Sustainable polymers from renewable resources. Nature, 540(7633), 354-362. doi:10.1038/nature21001Aldas, M., Paladines, A., Valle, V., Pazmiño, M., & Quiroz, F. (2018). Effect of the Prodegradant-Additive Plastics Incorporated on the Polyethylene Recycling. International Journal of Polymer Science, 2018, 1-10. doi:10.1155/2018/2474176Our Planet Is Drowning in Plastic Pollution https://www.unenvironment.org/interactive/beat-plastic-pollution/Queiroz, A. U. B., & Collares-Queiroz, F. P. (2009). Innovation and Industrial Trends in Bioplastics. Polymer Reviews, 49(2), 65-78. doi:10.1080/15583720902834759Johnson, M., Tucker, N., Barnes, S., & Kirwan, K. (2005). Improvement of the impact performance of a starch based biopolymer via the incorporation of Miscanthus giganteus fibres. Industrial Crops and Products, 22(3), 175-186. doi:10.1016/j.indcrop.2004.08.004Lagaron, J. M., & Lopez-Rubio, A. (2011). Nanotechnology for bioplastics: opportunities, challenges and strategies. Trends in Food Science & Technology, 22(11), 611-617. doi:10.1016/j.tifs.2011.01.007Arrieta, M. P., Samper, M. D., Jiménez-López, M., Aldas, M., & López, J. (2017). Combined effect of linseed oil and gum rosin as natural additives for PVC. Industrial Crops and Products, 99, 196-204. doi:10.1016/j.indcrop.2017.02.009Wilbon, P. A., Chu, F., & Tang, C. (2012). Progress in Renewable Polymers from Natural Terpenes, Terpenoids, and Rosin. Macromolecular Rapid Communications, 34(1), 8-37. doi:10.1002/marc.201200513Narayanan, M., Loganathan, S., Valapa, R. B., Thomas, S., & Varghese, T. O. (2017). UV protective poly(lactic acid)/rosin films for sustainable packaging. International Journal of Biological Macromolecules, 99, 37-45. doi:10.1016/j.ijbiomac.2017.01.152Kouparitsas, I. K., Mele, E., & Ronca, S. (2019). Synthesis and Electrospinning of Polycaprolactone from an Aluminium-Based Catalyst: Influence of the Ancillary Ligand and Initiators on Catalytic Efficiency and Fibre Structure. Polymers, 11(4), 677. doi:10.3390/polym11040677Labet, M., & Thielemans, W. (2009). Synthesis of polycaprolactone: a review. Chemical Society Reviews, 38(12), 3484. doi:10.1039/b820162pWoodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217-1256. doi:10.1016/j.progpolymsci.2010.04.002Yao, K., & Tang, C. (2013). Controlled Polymerization of Next-Generation Renewable Monomers and Beyond. Macromolecules, 46(5), 1689-1712. doi:10.1021/ma3019574Termentzi, A., Fokialakis, N., & Leandros Skaltsounis, A. (2011). Natural Resins and Bioactive Natural Products thereof as Potential Anitimicrobial Agents. Current Pharmaceutical Design, 17(13), 1267-1290. doi:10.2174/138161211795703807Savluchinske-Feio, S., Curto, M. J. M., Gigante, B., & Roseiro, J. C. (2006). Antimicrobial activity of resin acid derivatives. Applied Microbiology and Biotechnology, 72(3), 430-436. doi:10.1007/s00253-006-0517-0Yadav, B. K., Gidwani, B., & Vyas, A. (2015). Rosin: Recent advances and potential applications in novel drug delivery system. Journal of Bioactive and Compatible Polymers, 31(2), 111-126. doi:10.1177/0883911515601867Maiti, S., Ray, S. S., & Kundu, A. K. (1989). Rosin: a renewable resource for polymers and polymer chemicals. Progress in Polymer Science, 14(3), 297-338. doi:10.1016/0079-6700(89)90005-1Huang, W., Diao, K., Tan, X., Lei, F., Jiang, J., Goodman, B. A., … Liu, S. (2019). Mechanisms of Adsorption of Heavy Metal Cations from Waters by an Amino Bio-Based Resin Derived from Rosin. Polymers, 11(6), 969. doi:10.3390/polym11060969Schmitt, H., Guidez, A., Prashantha, K., Soulestin, J., Lacrampe, M. F., & Krawczak, P. (2015). Studies on the effect of storage time and plasticizers on the structural variations in thermoplastic starch. Carbohydrate Polymers, 115, 364-372. doi:10.1016/j.carbpol.2014.09.004Satturwar, P. M., Fulzele, S. V., & Dorle, A. K. (2003). Biodegradation and in vivo biocompatibility of rosin: a natural film-forming polymer. AAPS PharmSciTech, 4(4), 434-439. doi:10.1208/pt040455Gutierrez, J., & Tercjak, A. (2014). Natural gum rosin thin films nanopatterned by poly(styrene)-block-poly(4-vinylpiridine) block copolymer. RSC Advances, 4(60), 32024. doi:10.1039/c4ra04296dTulloch, A. P. (1980). Beeswax—Composition and Analysis. Bee World, 61(2), 47-62. doi:10.1080/0005772x.1980.11097776Buchwald, R., Breed, M. D., Greenberg, A. R., & Otis, G. (2006). Interspecific variation in beeswax as a biological construction material. Journal of Experimental Biology, 209(20), 3984-3989. doi:10.1242/jeb.02472Morgan, J., Townley, S., Kemble, G., & Smith, R. (2002). Measurement of physical and mechanical properties of beeswax. Materials Science and Technology, 18(4), 463-467. doi:10.1179/026708302225001714Gaillard, Y., Mija, A., Burr, A., Darque-Ceretti, E., Felder, E., & Sbirrazzuoli, N. (2011). Green material composites from renewable resources: Polymorphic transitions and phase diagram of beeswax/rosin resin. Thermochimica Acta, 521(1-2), 90-97. doi:10.1016/j.tca.2011.04.010Gaillard, Y., Girard, M., Monge, G., Burr, A., Ceretti, E. D., & Felder, E. (2012). Superplastic behavior of rosin/beeswax blends at room temperature. Journal of Applied Polymer Science, 128(5), 2713-2719. doi:10.1002/app.38333Chang, R., Rohindra, D., Lata, R., Kuboyama, K., & Ougizawa, T. (2018). Development of poly(ε-caprolactone)/pine resin blends: Study of thermal, mechanical, and antimicrobial properties. Polymer Engineering & Science, 59(s2), E32-E41. doi:10.1002/pen.24950Moustafa, H., El Kissi, N., Abou-Kandil, A. I., Abdel-Aziz, M. S., & Dufresne, A. (2017). PLA/PBAT Bionanocomposites with Antimicrobial Natural Rosin for Green Packaging. ACS Applied Materials & Interfaces, 9(23), 20132-20141. doi:10.1021/acsami.7b05557Geurtsen, W. (2000). Biocompatibility of Resin-Modified Filling Materials. Critical Reviews in Oral Biology & Medicine, 11(3), 333-355. doi:10.1177/10454411000110030401Fratini, F., Cilia, G., Turchi, B., & Felicioli, A. (2016). Beeswax: A minireview of its antimicrobial activity and its application in medicine. Asian Pacific Journal of Tropical Medicine, 9(9), 839-843. doi:10.1016/j.apjtm.2016.07.003Weatherall, I. L., & Coombs, B. D. (1992). Skin Color Measurements in Terms of CIELAB Color Space Values. Journal of Investigative Dermatology, 99(4), 468-473. doi:10.1111/1523-1747.ep12616156Pawlak, F., Aldas, M., López-Martínez, J., & Samper, M. D. (2019). Effect of Different Compatibilizers on Injection-Molded Green Fiber-Reinforced Polymers Based on Poly(lactic acid)-Maleinized Linseed Oil System and Sheep Wool. Polymers, 11(9), 1514. doi:10.3390/polym11091514Liu, G., Wu, G., Chen, J., & Kong, Z. (2016). Synthesis, modification and properties of rosin-based non-isocyanate polyurethanes coatings. Progress in Organic Coatings, 101, 461-467. doi:10.1016/j.porgcoat.2016.09.019Wong, R. B. K., & Lelievre, J. (1981). Viscoelastic behaviour of wheat starch pastes. Rheologica Acta, 20(3), 299-307. doi:10.1007/bf01678031Costakis, W. J., Rueschhoff, L. M., Diaz-Cano, A. I., Youngblood, J. P., & Trice, R. W. (2016). Additive manufacturing of boron carbide via continuous filament direct ink writing of aqueous ceramic suspensions. Journal of the European Ceramic Society, 36(14), 3249-3256. doi:10.1016/j.jeurceramsoc.2016.06.002Aldas, M., Ferri, J. M., Lopez‐Martinez, J., Samper, M. D., & Arrieta, M. P. (2019). Effect of pine resin derivatives on the structural, thermal, and mechanical properties of Mater‐Bi type bioplastic. Journal of Applied Polymer Science, 137(4), 48236. doi:10.1002/app.48236Coats, A. W., & Redfern, J. P. (1963). Thermogravimetric analysis. A review. The Analyst, 88(1053), 906. doi:10.1039/an9638800906Eshraghi, S., & Das, S. (2010). Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomaterialia, 6(7), 2467-2476. doi:10.1016/j.actbio.2010.02.002Jindal, R., Sharma, R., Maiti, M., Kaur, A., Sharma, P., Mishra, V., & Jana, A. K. (2016). Synthesis and characterization of novel reduced Gum rosin-acrylamide copolymer-based nanogel and their investigation for antibacterial activity. Polymer Bulletin, 74(8), 2995-3014. doi:10.1007/s00289-016-1877-yElzein, T., Nasser-Eddine, M., Delaite, C., Bistac, S., & Dumas, P. (2004). FTIR study of polycaprolactone chain organization at interfaces. Journal of Colloid and Interface Science, 273(2), 381-387. doi:10.1016/j.jcis.2004.02.001Amin, M., Putra, N., Kosasih, E. A., Prawiro, E., Luanto, R. A., & Mahlia, T. M. I. (2017). Thermal properties of beeswax/graphene phase change material as energy storage for building applications. Applied Thermal Engineering, 112, 273-280. doi:10.1016/j.applthermaleng.2016.10.085Aldas, M., Rayón, E., López-Martínez, J., & Arrieta, M. P. (2020). A Deeper Microscopic Study of the Interaction between Gum Rosin Derivatives and a Mater-Bi Type Bioplastic. Polymers, 12(1), 226. doi:10.3390/polym12010226Vasile, C., Stoleru, E., Darie-Niţa, R. N., Dumitriu, R. P., Pamfil, D., & Tarţau, L. (2019). Biocompatible Materials Based on Plasticized Poly(lactic acid), Chitosan and Rosemary Ethanolic Extract I. Effect of Chitosan on the Properties of Plasticized Poly(lactic acid) Materials. Polymers, 11(6), 941. doi:10.3390/polym11060941Fabra, M. J., Jiménez, A., Atarés, L., Talens, P., & Chiralt, A. (2009). Effect of Fatty Acids and Beeswax Addition on Properties of Sodium Caseinate Dispersions and Films. Biomacromolecules, 10(6), 1500-1507. doi:10.1021/bm900098pFabra, M. J., Talens, P., & Chiralt, A. (2009). Microstructure and optical properties of sodium caseinate films containing oleic acid–beeswax mixtures. Food Hydrocolloids, 23(3), 676-683. doi:10.1016/j.foodhyd.2008.04.015Vogler, E. A. (1998). Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science, 74(1-3), 69-117. doi:10.1016/s0001-8686(97)00040-7Arrieta, M. P., Peltzer, M. A., López, J., Garrigós, M. del C., Valente, A. J. M., & Jiménez, A. (2014). Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol. Journal of Food Engineering, 121, 94-101. doi:10.1016/j.jfoodeng.2013.08.015Hambleton, A., Fabra, M.-J., Debeaufort, F., Dury-Brun, C., & Voilley, A. (2009). Interface and aroma barrier properties of iota-carrageenan emulsion–based films used for encapsulation of active food compounds. Journal of Food Engineering, 93(1), 80-88. doi:10.1016/j.jfoodeng.2009.01.00

    Pine Resin Derivatives as Sustainable Additives to Improve the Mechanical and Thermal Properties of Injected Moulded Thermoplastic Starch

    Get PDF
    [EN] Fully bio-based materials based on thermoplastic starch (TPS) were developed starting from corn starch plasticized with glycerol. The obtained TPS was further blended with five pine resin derivatives: gum rosin (GR), disproportionated gum rosin (dehydroabietic acid, RD), maleic anhydride modified gum rosin (CM), pentaerythritol ester of gum rosin (LF), and glycerol ester of gum rosin (UG). The TPS¿resin blend formulations were processed by melt extrusion and further by injection moulding to simulate the industrial conditions. The obtained materials were characterized in terms of mechanical, thermal and structural properties. The results showed that all gum rosin-based additives were able to improve the thermal stability of TPS, increasing the degradation onset temperature. The carbonyl groups of gum rosin derivatives were able to interact with the hydroxyl groups of starch and glycerol by means of hydrogen bond interactions producing a significant increase of the glass transition temperature with a consequent stiffening effect, which in turn improve the overall mechanical performance of the TPS-resin injected moulded blends. The developed TPS¿resin blends are of interest for rigid packaging applications.This research was funded by the Spanish Ministry of Economy and Competitiveness (MINECO), project: PROMADEPCOL (MAT2017-84909-C2-2-R) as well as by Santander-UCM (PR87/19-22628) project. M.A. thanks Secretaria Nacional de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT-Ecuador) and Escuela Politécnica Nacional. C.P. thanks Santiago Grisolía fellowship (GRISOLIAP/2019/113) from Generalitat Valenciana and M.P.A. thanks MINECO for her postdoctoral contract: Juan de la Cierva-Incorporación (FJCI-2017-33536).Aldas-Carrasco, MF.; Pavón-Vargas, CP.; López-Martínez, J.; Arrieta, MP. (2020). Pine Resin Derivatives as Sustainable Additives to Improve the Mechanical and Thermal Properties of Injected Moulded Thermoplastic Starch. Applied Sciences. 10(7):1-17. https://doi.org/10.3390/app10072561S117107An Analysis of European Plastics Production, Demand and Waste Data https://www.plasticseurope.org/application/files/6315/4510/9658/Plastics_the_facts_2018_AF_web.pdfArrieta, M., Samper, M., Aldas, M., & López, J. (2017). On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials, 10(9), 1008. doi:10.3390/ma10091008Avérous, L. (2004). Biodegradable Multiphase Systems Based on Plasticized Starch: A Review. Journal of Macromolecular Science, Part C: Polymer Reviews, 44(3), 231-274. doi:10.1081/mc-200029326Auras, R., Harte, B., & Selke, S. (2004). An Overview of Polylactides as Packaging Materials. Macromolecular Bioscience, 4(9), 835-864. doi:10.1002/mabi.200400043Aldas, M., Ferri, J. M., Lopez‐Martinez, J., Samper, M. D., & Arrieta, M. P. (2019). Effect of pine resin derivatives on the structural, thermal, and mechanical properties of Mater‐Bi type bioplastic. Journal of Applied Polymer Science, 137(4), 48236. doi:10.1002/app.48236Aldas, M., Paladines, A., Valle, V., Pazmiño, M., & Quiroz, F. (2018). Effect of the Prodegradant-Additive Plastics Incorporated on the Polyethylene Recycling. International Journal of Polymer Science, 2018, 1-10. doi:10.1155/2018/2474176Simon, J., Müller, H. P., Koch, R., & Müller, V. (1998). Thermoplastic and biodegradable polymers of cellulose. Polymer Degradation and Stability, 59(1-3), 107-115. doi:10.1016/s0141-3910(97)00151-1Arrieta, M. P., Fortunati, E., Burgos, N., Peltzer, M. A., López, J., & Peponi, L. (2016). Nanocellulose-Based Polymeric Blends for Food Packaging Applications. Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements, 205-252. doi:10.1016/b978-0-323-44248-0.00007-9Sadeghifar, H., Cui, C., & Argyropoulos, D. S. (2012). Toward Thermoplastic Lignin Polymers. Part 1. Selective Masking of Phenolic Hydroxyl Groups in Kraft Lignins via Methylation and Oxypropylation Chemistries. Industrial & Engineering Chemistry Research, 51(51), 16713-16720. doi:10.1021/ie301848jWilbon, P. A., Chu, F., & Tang, C. (2012). Progress in Renewable Polymers from Natural Terpenes, Terpenoids, and Rosin. Macromolecular Rapid Communications, 34(1), 8-37. doi:10.1002/marc.201200513Liu, C., Liu, F., Cai, J., Xie, W., Long, T. E., Turner, S. R., … Gross, R. A. (2011). Polymers from Fatty Acids: Poly(ω-hydroxyl tetradecanoic acid) Synthesis and Physico-Mechanical Studies. Biomacromolecules, 12(9), 3291-3298. doi:10.1021/bm2007554Galbis, J. A., García-Martín, M. de G., de Paz, M. V., & Galbis, E. (2015). Synthetic Polymers from Sugar-Based Monomers. Chemical Reviews, 116(3), 1600-1636. doi:10.1021/acs.chemrev.5b00242Lu, D. R., Xiao, C. M., & Xu, S. J. (2009). Starch-based completely biodegradable polymer materials. Express Polymer Letters, 3(6), 366-375. doi:10.3144/expresspolymlett.2009.46Ghanbari, A., Tabarsa, T., Ashori, A., Shakeri, A., & Mashkour, M. (2018). Thermoplastic starch foamed composites reinforced with cellulose nanofibers: Thermal and mechanical properties. Carbohydrate Polymers, 197, 305-311. doi:10.1016/j.carbpol.2018.06.017Sessini, V., Arrieta, M. P., Fernández-Torres, A., & Peponi, L. (2018). Humidity-activated shape memory effect on plasticized starch-based biomaterials. Carbohydrate Polymers, 179, 93-99. doi:10.1016/j.carbpol.2017.09.070Angellier, H., Molina-Boisseau, S., Dole, P., & Dufresne, A. (2006). Thermoplastic Starch−Waxy Maize Starch Nanocrystals Nanocomposites. Biomacromolecules, 7(2), 531-539. doi:10.1021/bm050797sJiugao, Y., Ning, W., & Xiaofei, M. (2005). The Effects of Citric Acid on the Properties of Thermoplastic Starch Plasticized by Glycerol. Starch - Stärke, 57(10), 494-504. doi:10.1002/star.200500423Arrieta, M. P., Peltzer, M. A., Garrigós, M. del C., & Jiménez, A. (2013). Structure and mechanical properties of sodium and calcium caseinate edible active films with carvacrol. Journal of Food Engineering, 114(4), 486-494. doi:10.1016/j.jfoodeng.2012.09.002Montava-Jordà, S., Torres-Giner, S., Ferrandiz-Bou, S., Quiles-Carrillo, L., & Montanes, N. (2019). Development of Sustainable and Cost-Competitive Injection-Molded Pieces of Partially Bio-Based Polyethylene Terephthalate through the Valorization of Cotton Textile Waste. International Journal of Molecular Sciences, 20(6), 1378. doi:10.3390/ijms20061378European Parliamentary Research Service http://www.europarl.europa.eu/RegData/etudes/ATAG/2018/625163/EPRS_ATA_ATA(2018)625163_EN.pdfSarasini, F., Puglia, D., Fortunati, E., Kenny, J. M., & Santulli, C. (2013). Effect of Fiber Surface Treatments on Thermo-Mechanical Behavior of Poly(Lactic Acid)/Phormium Tenax Composites. Journal of Polymers and the Environment, 21(3), 881-891. doi:10.1007/s10924-013-0594-yImre, B., & Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable polymer blends. European Polymer Journal, 49(6), 1215-1233. doi:10.1016/j.eurpolymj.2013.01.019Samper, M., Bertomeu, D., Arrieta, M., Ferri, J., & López-Martínez, J. (2018). Interference of Biodegradable Plastics in the Polypropylene Recycling Process. Materials, 11(10), 1886. doi:10.3390/ma11101886Dolores, S. M., Marina Patricia, A., Santiago, F., & Juan, L. (2014). Influence of biodegradable materials in the recycled polystyrene. Journal of Applied Polymer Science, 131(23), n/a-n/a. doi:10.1002/app.41161Samper-Madrigal, M. D., Fenollar, O., Dominici, F., Balart, R., & Kenny, J. M. (2014). The effect of sepiolite on the compatibilization of polyethylene–thermoplastic starch blends for environmentally friendly films. Journal of Materials Science, 50(2), 863-872. doi:10.1007/s10853-014-8647-8Sessini, V., Arrieta, M. P., Raquez, J.-M., Dubois, P., Kenny, J. M., & Peponi, L. (2019). Thermal and composting degradation of EVA/Thermoplastic starch blends and their nanocomposites. Polymer Degradation and Stability, 159, 184-198. doi:10.1016/j.polymdegradstab.2018.11.025Ferri, J. M., Garcia-Garcia, D., Carbonell-Verdu, A., Fenollar, O., & Balart, R. (2017). Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch. Journal of Applied Polymer Science, 135(4), 45751. doi:10.1002/app.45751Garrido-Miranda, K. A., Rivas, B. L., Pérez -Rivera, M. A., Sanfuentes, E. A., & Peña-Farfal, C. (2018). Antioxidant and antifungal effects of eugenol incorporated in bionanocomposites of poly(3-hydroxybutyrate)-thermoplastic starch. LWT, 98, 260-267. doi:10.1016/j.lwt.2018.08.046Yadav, B. K., Gidwani, B., & Vyas, A. (2015). Rosin: Recent advances and potential applications in novel drug delivery system. Journal of Bioactive and Compatible Polymers, 31(2), 111-126. doi:10.1177/0883911515601867Rodríguez-García, A., Martín, J. A., López, R., Sanz, A., & Gil, L. (2016). Effect of four tapping methods on anatomical traits and resin yield in Maritime pine (Pinus pinaster Ait.). Industrial Crops and Products, 86, 143-154. doi:10.1016/j.indcrop.2016.03.033Llevot, A., Grau, E., Carlotti, S., Grelier, S., & Cramail, H. (2015). Dimerization of abietic acid for the design of renewable polymers by ADMET. European Polymer Journal, 67, 409-417. doi:10.1016/j.eurpolymj.2014.10.021Arrieta, M. P., Samper, M. D., Jiménez-López, M., Aldas, M., & López, J. (2017). Combined effect of linseed oil and gum rosin as natural additives for PVC. Industrial Crops and Products, 99, 196-204. doi:10.1016/j.indcrop.2017.02.009Yao, K., & Tang, C. (2013). Controlled Polymerization of Next-Generation Renewable Monomers and Beyond. Macromolecules, 46(5), 1689-1712. doi:10.1021/ma3019574Gandini, A., & Lacerda, T. M. (2015). From monomers to polymers from renewable resources: Recent advances. Progress in Polymer Science, 48, 1-39. doi:10.1016/j.progpolymsci.2014.11.002Kumooka, Y. (2008). Analysis of rosin and modified rosin esters in adhesives by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Forensic Science International, 176(2-3), 111-120. doi:10.1016/j.forsciint.2007.07.009Aldas, M., Rayón, E., López-Martínez, J., & Arrieta, M. P. (2020). A Deeper Microscopic Study of the Interaction between Gum Rosin Derivatives and a Mater-Bi Type Bioplastic. Polymers, 12(1), 226. doi:10.3390/polym12010226Bucci, D. Z., Tavares, L. B. B., & Sell, I. (2005). PHB packaging for the storage of food products. Polymer Testing, 24(5), 564-571. doi:10.1016/j.polymertesting.2005.02.008Barbosa, S. E., & Kenny, J. M. (1999). Processing of short fiber reinforced polypropylene. II: Statistical study of the effects of processing conditions on the impact strength. Polymer Engineering & Science, 39(10), 1880-1890. doi:10.1002/pen.11581Olivato, J. B., Grossmann, M. V. E., Bilck, A. P., & Yamashita, F. (2012). Effect of organic acids as additives on the performance of thermoplastic starch/polyester blown films. Carbohydrate Polymers, 90(1), 159-164. doi:10.1016/j.carbpol.2012.05.009Narayanan, M., Loganathan, S., Valapa, R. B., Thomas, S., & Varghese, T. O. (2017). UV protective poly(lactic acid)/rosin films for sustainable packaging. International Journal of Biological Macromolecules, 99, 37-45. doi:10.1016/j.ijbiomac.2017.01.152Pavon, C., Aldas, M., López-Martínez, J., & Ferrándiz, S. (2020). New Materials for 3D-Printing Based on Polycaprolactone with Gum Rosin and Beeswax as Additives. Polymers, 12(2), 334. doi:10.3390/polym12020334Bergström, J. (2015). Experimental Characterization Techniques. Mechanics of Solid Polymers, 19-114. doi:10.1016/b978-0-323-31150-2.00002-9Wattanakornsiri, A., Pachana, K., Kaewpirom, S., Traina, M., & Migliaresi, C. (2012). Preparation and Properties of Green Composites Based on Tapioca Starch and Differently Recycled Paper Cellulose Fibers. Journal of Polymers and the Environment, 20(3), 801-809. doi:10.1007/s10924-012-0494-6Forssell, P. M., Mikkilä, J. M., Moates, G. K., & Parker, R. (1997). Phase and glass transition behaviour of concentrated barley starch-glycerol-water mixtures, a model for thermoplastic starch. Carbohydrate Polymers, 34(4), 275-282. doi:10.1016/s0144-8617(97)00133-1Karlberg, A.-T. (2012). Colophony: Rosin in Unmodified and Modified Form. Kanerva’s Occupational Dermatology, 467-479. doi:10.1007/978-3-642-02035-3_41Liu, C., Yu, J., Sun, X., Zhang, J., & He, J. (2003). Thermal degradation studies of cyclic olefin copolymers. Polymer Degradation and Stability, 81(2), 197-205. doi:10.1016/s0141-3910(03)00089-2Teixeira, E. de M., Pasquini, D., Curvelo, A. A. S., Corradini, E., Belgacem, M. N., & Dufresne, A. (2009). Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydrate Polymers, 78(3), 422-431. doi:10.1016/j.carbpol.2009.04.034Sessini, V., Arrieta, M. P., Kenny, J. M., & Peponi, L. (2016). Processing of edible films based on nanoreinforced gelatinized starch. Polymer Degradation and Stability, 132, 157-168. doi:10.1016/j.polymdegradstab.2016.02.026Cerruti, P., Santagata, G., Gomez d’Ayala, G., Ambrogi, V., Carfagna, C., Malinconico, M., & Persico, P. (2011). Effect of a natural polyphenolic extract on the properties of a biodegradable starch-based polymer. Polymer Degradation and Stability, 96(5), 839-846. doi:10.1016/j.polymdegradstab.2011.02.003Mendes, J. F., Paschoalin, R. ., Carmona, V. B., Sena Neto, A. R., Marques, A. C. P., Marconcini, J. M., … Oliveira, J. E. (2016). Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydrate Polymers, 137, 452-458. doi:10.1016/j.carbpol.2015.10.093Kizil, R., Irudayaraj, J., & Seetharaman, K. (2002). Characterization of Irradiated Starches by Using FT-Raman and FTIR Spectroscopy. Journal of Agricultural and Food Chemistry, 50(14), 3912-3918. doi:10.1021/jf011652pDang, K. M., & Yoksan, R. (2015). Development of thermoplastic starch blown film by incorporating plasticized chitosan. Carbohydrate Polymers, 115, 575-581. doi:10.1016/j.carbpol.2014.09.005El-Ghazawy, R. A., El-Saeed, A. M., Al-Shafey, H. I., Abdul-Raheim, A.-R. M., & El-Sockary, M. A. (2015). Rosin based epoxy coating: Synthesis, identification and characterization. European Polymer Journal, 69, 403-415. doi:10.1016/j.eurpolymj.2015.06.025Campos, A., Teodoro, K. B. R., Teixeira, E. M., Corrêa, A. C., Marconcini, J. M., Wood, D. F., … Mattoso, L. H. C. (2012). Properties of thermoplastic starch and TPS/polycaprolactone blend reinforced with sisal whiskers using extrusion processing. Polymer Engineering & Science, 53(4), 800-808. doi:10.1002/pen.2332

    Effect of pine resin derivatives on the structural, thermal, and mechanical properties of Mater-Bi type bioplastic

    Full text link
    "This is the peer reviewed version of the following article: Aldas, M., J. M. Ferri, J. Lopez-Martinez, M. D. Samper, and M. P. Arrieta. 2019. Effect of Pine Resin Derivatives on the Structural, Thermal, and Mechanical Properties of Mater-Bi Type Bioplastic. Journal of Applied Polymer Science 137 (4). Wiley: 48236. doi:10.1002/app.48236, which has been published in final form at https://doi.org/10.1002/app.48236. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] The effect of three additives derived from pine resin, namely, gum rosin (GR) and two pentaerythritol ester of GR, Lurefor (LF) and Unik Tack (UT), in 5, 10, and 15 wt %, on the properties of Mater-Bi, based on plasticized starch, poly(butylene adipate-co-terephthalate), and poly(epsilon-caprolactone) (PCL), obtained by injection molding processes, was studied. The mechanical, microstructural, and thermal properties were evaluated. LF had a cohesive behavior with the components of Mater-Bi, increasing the toughness of the material up to 250% accompanied by an increase of tensile modulus and tensile strength. UT had an intermediate behavior, conferring cohesive and plasticizing effects, allowing an increase of 105% in impact resistance. GR had a more marked plasticizing effect. This allows processing temperatures of about 50 degrees C lower than those used for neat Mater-Bi. In addition, an increase of the elongation at break, toughness, and impact resistance in 370, 480, and 250%, respectively, was achieved.This work was supported by the Spanish Ministry of Economy and Competitiveness, PROMADEPCOL (MAT2017-84909-C2-2-R). M. P. Arrieta thanks Complutense University of Madrid for "Ayudas para la contratacion de personal postdoctoral en formacion en docencia e investigacion en departamentos de la UCM."Aldas-Carrasco, MF.; Ferri, JM.; López-Martínez, J.; Samper, M.; Arrieta, MP. (2020). Effect of pine resin derivatives on the structural, thermal, and mechanical properties of Mater-Bi type bioplastic. Journal of Applied Polymer Science. 137(4):1-14. https://doi.org/10.1002/app.48236S1141374Plastics Europe Plastics – the Facts 2018. An analysis of European plastics production demand and waste data” [Online]. Available:https://www.plasticseurope.org/application/files/6315/4510/9658/Plastics_the_facts_2018_AF_web.pdf(accessed on July 1 2019).Arrieta, M. P., Peponi, L., López, D., & Fernández-García, M. (2018). Recovery of yerba mate (Ilex paraguariensis) residue for the development of PLA-based bionanocomposite films. Industrial Crops and Products, 111, 317-328. doi:10.1016/j.indcrop.2017.10.042Akrami, M., Ghasemi, I., Azizi, H., Karrabi, M., & Seyedabadi, M. (2016). A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydrate Polymers, 144, 254-262. doi:10.1016/j.carbpol.2016.02.035Arrieta, M., Samper, M., Aldas, M., & López, J. (2017). On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials, 10(9), 1008. doi:10.3390/ma10091008Elfehri Borchani, K., Carrot, C., & Jaziri, M. (2015). Biocomposites of Alfa fibers dispersed in the Mater-Bi® type bioplastic: Morphology, mechanical and thermal properties. Composites Part A: Applied Science and Manufacturing, 78, 371-379. doi:10.1016/j.compositesa.2015.08.023Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082Arrieta, M. P., López, J., López, D., Kenny, J. M., & Peponi, L. (2016). Effect of chitosan and catechin addition on the structural, thermal, mechanical and disintegration properties of plasticized electrospun PLA-PHB biocomposites. Polymer Degradation and Stability, 132, 145-156. doi:10.1016/j.polymdegradstab.2016.02.027Fabra, M. J., López-Rubio, A., Cabedo, L., & Lagaron, J. M. (2016). Tailoring barrier properties of thermoplastic corn starch-based films (TPCS) by means of a multilayer design. Journal of Colloid and Interface Science, 483, 84-92. doi:10.1016/j.jcis.2016.08.021Makaremi, M., Pasbakhsh, P., Cavallaro, G., Lazzara, G., Aw, Y. K., Lee, S. M., & Milioto, S. (2017). Effect of Morphology and Size of Halloysite Nanotubes on Functional Pectin Bionanocomposites for Food Packaging Applications. ACS Applied Materials & Interfaces, 9(20), 17476-17488. doi:10.1021/acsami.7b04297Niu, X., Liu, Y., Song, Y., Han, J., & Pan, H. (2018). Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid /chitosan composite film for food packaging. Carbohydrate Polymers, 183, 102-109. doi:10.1016/j.carbpol.2017.11.079Mujica‐Garcia A.;Sonseca A.;Arrieta M. P.;Yusef M.;López D.;Gimenez E.;Kenny J. M.;Peponi L.In Tiwari A. Wang R. Wei B.; Advanced Surface Engineering Materials; Wiley: Massachussets USA 2016.Sessini, V., Arrieta, M. P., Kenny, J. M., & Peponi, L. (2016). Processing of edible films based on nanoreinforced gelatinized starch. Polymer Degradation and Stability, 132, 157-168. doi:10.1016/j.polymdegradstab.2016.02.026Ferri, J. M., Garcia-Garcia, D., Carbonell-Verdu, A., Fenollar, O., & Balart, R. (2017). Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch. Journal of Applied Polymer Science, 135(4), 45751. doi:10.1002/app.45751Trovatti, E., Carvalho, A. J. F., & Gandini, A. (2014). A new approach to blending starch with natural rubber. Polymer International, 64(5), 605-610. doi:10.1002/pi.4808Samper-Madrigal, M. D., Fenollar, O., Dominici, F., Balart, R., & Kenny, J. M. (2014). The effect of sepiolite on the compatibilization of polyethylene–thermoplastic starch blends for environmentally friendly films. Journal of Materials Science, 50(2), 863-872. doi:10.1007/s10853-014-8647-8Azevedo, V. M., Borges, S. V., Marconcini, J. M., Yoshida, M. I., Neto, A. R. S., Pereira, T. C., & Pereira, C. F. G. (2017). Effect of replacement of corn starch by whey protein isolate in biodegradable film blends obtained by extrusion. Carbohydrate Polymers, 157, 971-980. doi:10.1016/j.carbpol.2016.10.046Sessini, V., Raquez, J.-M., Lourdin, D., Maigret, J.-E., Kenny, J. M., Dubois, P., & Peponi, L. (2017). Humidity-Activated Shape Memory Effects on Thermoplastic Starch/EVA Blends and Their Compatibilized Nanocomposites. Macromolecular Chemistry and Physics, 218(24), 1700388. doi:10.1002/macp.201700388Correa, A. C., Carmona, V. B., Simão, J. A., Capparelli Mattoso, L. H., & Marconcini, J. M. (2017). Biodegradable blends of urea plasticized thermoplastic starch (UTPS) and poly(ε-caprolactone) (PCL): Morphological, rheological, thermal and mechanical properties. Carbohydrate Polymers, 167, 177-184. doi:10.1016/j.carbpol.2017.03.051Lendvai, L., Apostolov, A., & Karger-Kocsis, J. (2017). Characterization of layered silicate-reinforced blends of thermoplastic starch (TPS) and poly(butylene adipate-co-terephthalate). Carbohydrate Polymers, 173, 566-572. doi:10.1016/j.carbpol.2017.05.100Mikus, P.-Y., Alix, S., Soulestin, J., Lacrampe, M. F., Krawczak, P., Coqueret, X., & Dole, P. (2014). Deformation mechanisms of plasticized starch materials. Carbohydrate Polymers, 114, 450-457. doi:10.1016/j.carbpol.2014.06.087Sessini, V., Arrieta, M. P., Raquez, J.-M., Dubois, P., Kenny, J. M., & Peponi, L. (2019). Thermal and composting degradation of EVA/Thermoplastic starch blends and their nanocomposites. Polymer Degradation and Stability, 159, 184-198. doi:10.1016/j.polymdegradstab.2018.11.025Arrieta, M. P., Samper, M. D., Jiménez-López, M., Aldas, M., & López, J. (2017). Combined effect of linseed oil and gum rosin as natural additives for PVC. Industrial Crops and Products, 99, 196-204. doi:10.1016/j.indcrop.2017.02.009Narayanan, M., Loganathan, S., Valapa, R. B., Thomas, S., & Varghese, T. O. (2017). UV protective poly(lactic acid)/rosin films for sustainable packaging. International Journal of Biological Macromolecules, 99, 37-45. doi:10.1016/j.ijbiomac.2017.01.152Wilbon, P. A., Chu, F., & Tang, C. (2012). Progress in Renewable Polymers from Natural Terpenes, Terpenoids, and Rosin. Macromolecular Rapid Communications, 34(1), 8-37. doi:10.1002/marc.201200513Rodríguez-García, A., Martín, J. A., López, R., Sanz, A., & Gil, L. (2016). Effect of four tapping methods on anatomical traits and resin yield in Maritime pine (Pinus pinaster Ait.). Industrial Crops and Products, 86, 143-154. doi:10.1016/j.indcrop.2016.03.033Sharma, L., & Singh, C. (2016). Composite film developed from the blends of sesame protein isolate and gum rosin and their properties thereof. Polymer Composites, 39(5), 1480-1487. doi:10.1002/pc.24088Moustafa, H., El Kissi, N., Abou-Kandil, A. I., Abdel-Aziz, M. S., & Dufresne, A. (2017). PLA/PBAT Bionanocomposites with Antimicrobial Natural Rosin for Green Packaging. ACS Applied Materials & Interfaces, 9(23), 20132-20141. doi:10.1021/acsami.7b05557Yu, C., Chen, C., Gong, Q., & Zhang, F.-A. (2012). Preparation of polymer microspheres with a rosin moiety from rosin ester, styrene and divinylbenzene. Polymer International, 61(11), 1619-1626. doi:10.1002/pi.4249Gutierrez, J., & Tercjak, A. (2014). Natural gum rosin thin films nanopatterned by poly(styrene)-block-poly(4-vinylpiridine) block copolymer. RSC Advances, 4(60), 32024. doi:10.1039/c4ra04296dCavallaro, G., Lazzara, G., Milioto, S., Parisi, F., & Ruisi, F. (2017). Nanocomposites based on esterified colophony and halloysite clay nanotubes as consolidants for waterlogged archaeological woods. Cellulose, 24(8), 3367-3376. doi:10.1007/s10570-017-1369-8Marina P. Arrieta, Juan López, Santiago Ferrándiz, & Mercedes A. Peltzer. (2015). EFFECT OF D-LIMONENE ON THE STABILIZATION OF POLY (LACTIC ACID). Acta Horticulturae, (1065), 719-725. doi:10.17660/actahortic.2015.1065.90Arrieta, M. P., López, J., Hernández, A., & Rayón, E. (2014). Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50, 255-270. doi:10.1016/j.eurpolymj.2013.11.009Liu, X. Q., Huang, W., Jiang, Y. H., Zhu, J., & Zhang, C. Z. (2012). Preparation of a bio-based epoxy with comparable properties to those of petroleum-based counterparts. Express Polymer Letters, 6(4), 293-298. doi:10.3144/expresspolymlett.2012.32International Standards Organization ISO 527‐1:2012 ‐ Plastics ‐ Determination of tensile properties ‐ Part 1: General 2012.Sessini, V., Raquez, J.-M., Lo Re, G., Mincheva, R., Kenny, J. M., Dubois, P., & Peponi, L. (2016). Multiresponsive Shape Memory Blends and Nanocomposites Based on Starch. ACS Applied Materials & Interfaces, 8(30), 19197-19201. doi:10.1021/acsami.6b06618Samper, M., Bertomeu, D., Arrieta, M., Ferri, J., & López-Martínez, J. (2018). Interference of Biodegradable Plastics in the Polypropylene Recycling Process. Materials, 11(10), 1886. doi:10.3390/ma11101886International Standards Organization ISO 178:2010 ‐ Plastics ‐ Determination of flexural propertie 2010.International Standards Organization ISO 179:2010 ‐ Plastics ‐ Determination of charpy impact properties 2010.International Standards Organization ISO 868:2003 ‐ Plastics and ebonite ‐ Determination of indentation hardness by means of a durometer (Shore hardness) 2003.Jost, V. (2018). Packaging related properties of commercially available biopolymers – An overview of the status quo. Express Polymer Letters, 12(5), 429-435. doi:10.3144/expresspolymlett.2018.36International Standards Organization ISO 75‐1:2013 ‐ Plastics ‐ Determination of temperature of deflection under load ‐ Part 1: General test method 2013.Mok, S. L., Kwong, C. K., & Lau, W. S. (2001). A Hybrid Neural Network and Genetic Algorithm Approach to the Determination of Initial Process Parameters for Injection Moulding. The International Journal of Advanced Manufacturing Technology, 18(6), 404-409. doi:10.1007/s001700170050Al-Itry, R., Lamnawar, K., & Maazouz, A. (2012). Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation and Stability, 97(10), 1898-1914. doi:10.1016/j.polymdegradstab.2012.06.028Bastioli, C., Cerutti, A., Guanella, I., Romano, G. C., & Tosin, M. (1995). Physical state and biodegradation behavior of starch-polycaprolactone systems. Journal of Environmental Polymer Degradation, 3(2), 81-95. doi:10.1007/bf02067484Esmaeili, M., Pircheraghi, G., & Bagheri, R. (2017). Optimizing the mechanical and physical properties of thermoplastic starch via tuning the molecular microstructure through co-plasticization by sorbitol and glycerol. Polymer International, 66(6), 809-819. doi:10.1002/pi.5319Mano, J. F., Koniarova, D., & Reis, R. L. (2003). Journal of Materials Science: Materials in Medicine, 14(2), 127-135. doi:10.1023/a:1022015712170Khan, G., Yadav, S. K., Patel, R. R., Kumar, N., Bansal, M., & Mishra, B. (2017). Tinidazole functionalized homogeneous electrospun chitosan/poly (ε-caprolactone) hybrid nanofiber membrane: Development, optimization and its clinical implications. International Journal of Biological Macromolecules, 103, 1311-1326. doi:10.1016/j.ijbiomac.2017.05.161Arrieta, M. P., & Peponi, L. (2017). Polyurethane based on PLA and PCL incorporated with catechin: Structural, thermal and mechanical characterization. European Polymer Journal, 89, 174-184. doi:10.1016/j.eurpolymj.2017.02.028Jindal, R., Sharma, R., Maiti, M., Kaur, A., Sharma, P., Mishra, V., & Jana, A. K. (2016). Synthesis and characterization of novel reduced Gum rosin-acrylamide copolymer-based nanogel and their investigation for antibacterial activity. Polymer Bulletin, 74(8), 2995-3014. doi:10.1007/s00289-016-1877-ySingh, V., Joshi, S., & Malviya, T. (2018). Carboxymethyl cellulose-rosin gum hybrid nanoparticles: An efficient drug carrier. International Journal of Biological Macromolecules, 112, 390-398. doi:10.1016/j.ijbiomac.2018.01.184Garcia-Garcia, D., Rayón, E., Carbonell-Verdu, A., Lopez-Martinez, J., & Balart, R. (2017). Improvement of the compatibility between poly(3-hydroxybutyrate) and poly(ε-caprolactone) by reactive extrusion with dicumyl peroxide. European Polymer Journal, 86, 41-57. doi:10.1016/j.eurpolymj.2016.11.018Peponi, L., Sessini, V., Arrieta, M. P., Navarro-Baena, I., Sonseca, A., Dominici, F., … Kenny, J. M. (2018). Thermally-activated shape memory effect on biodegradable nanocomposites based on PLA/PCL blend reinforced with hydroxyapatite. Polymer Degradation and Stability, 151, 36-51. doi:10.1016/j.polymdegradstab.2018.02.019Muthuraj, R., Misra, M., & Mohanty, A. K. (2015). Hydrolytic degradation of biodegradable polyesters under simulated environmental conditions. Journal of Applied Polymer Science, 132(27), n/a-n/a. doi:10.1002/app.42189Signori, F., Coltelli, M.-B., & Bronco, S. (2009). Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polymer Degradation and Stability, 94(1), 74-82. doi:10.1016/j.polymdegradstab.2008.10.004Navarro-Baena, I., Arrieta, M. P., Sonseca, A., Torre, L., López, D., Giménez, E., … Peponi, L. (2015). Biodegradable nanocomposites based on poly(ester-urethane) and nanosized hydroxyapatite: Plastificant and reinforcement effects. Polymer Degradation and Stability, 121, 171-179. doi:10.1016/j.polymdegradstab.2015.09.002Salgado, C., Arrieta, M. P., Peponi, L., Fernández-García, M., & López, D. (2016). Influence of Poly(ε-caprolactone) Molecular Weight and Coumarin Amount on Photo-Responsive Polyurethane Properties. Macromolecular Materials and Engineering, 302(4), 1600515. doi:10.1002/mame.201600515Ferri, J. M., Fenollar, O., Jorda-Vilaplana, A., García-Sanoguera, D., & Balart, R. (2016). Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/ polycaprolactone blends. Polymer International, 65(4), 453-463. doi:10.1002/pi.5079Cerruti, P., Santagata, G., Gomez d’Ayala, G., Ambrogi, V., Carfagna, C., Malinconico, M., & Persico, P. (2011). Effect of a natural polyphenolic extract on the properties of a biodegradable starch-based polymer. Polymer Degradation and Stability, 96(5), 839-846. doi:10.1016/j.polymdegradstab.2011.02.00

    Valoración de la efectividad de la educación alimentaria en niños preescolares, padres y educadores

    Get PDF
    Introduction: Childhood is the period in which risk factors that can start food diseases in adults are developed. Therefore this is the appropriate moment to set up the values of a healthy diet. The main aim of this study was to evaluate the adherence to the Mediterranean Diet in children and also the knowledge about healthy habits in children, parents and teachers before and after food education intervention as well as evaluating its effectiveness.Material and Methods: Cross-sectional study that included 94 students aged between 3 and 6 years old, 12 parents and 8 teachers. The level of healthy habits knowledge was determined with ad hoc questionnaires for all of them whereas the adherence to the Mediterranean Diet was determined with the Quality Test of the Mediterranean Diet on Childhood and Adolescence in children.Results: It has been reached a significant increase in global healthy habits knowledge (t=-6.29; p<0.001), in how often they have to eat (t=-2.35; p<0.05), as well as in fruit (t=-3.92; p<0.01), vegetables (t=-2.35; p<0.05) and fish (t=-7.42; p<0.001) frequency intake in parents and also in physical activities knowledge (t=-2.58; p<0.05) in children. Moreover, children’s parents with more adhesion to the Mediterranean Diet improved their healthy habits knowledge significantly (ρ=0.75; p<0.01).Conclusions: Education interventions for children, parents and educators are necessary in order to increase healthy food knowledge. With food education interventions is possible to get a significant improvement in the parents’ knowledge, the main responsible for their children feeding.Introducción: La etapa infantil es el momento en el que se desarrollan los factores de riesgo que pueden desencadenar en edades adultas enfermedades relacionadas con la alimentación. Éste es el momento adecuado para instaurar las bases de una alimentación saludable. El objetivo del presente estudio fue evaluar la adherencia a la Dieta Mediterránea de niños, los conocimientos sobre hábitos saludables de niños, padres y profesores antes y después de una intervención de educación alimentaria, así como evaluar su eficacia.Material y Métodos: Estudio transversal en el que participaron 94 estudiantes de edades comprendidas entre 3 y 6 años, 12 padres y 8 profesores. Se calculó el grado de conocimientos sobre hábitos saludables mediante cuestionarios ad hoc de todos ellos y la adherencia a la Dieta Mediterránea de los niños mediante el Test de Calidad de la Dieta Mediterránea en la infancia y la adolescencia.Resultados: Se consiguió un aumento significativo en los conocimientos globales sobre hábitos saludables (t=-6,29; p<0,001), así como los referentes al número de comidas (t=-2,35; p<0,05) y frecuencia de consumo de fruta (t=-3,92; p<0,01), verdura (t=-2,35; p<0,05) y pescado (t=-7,42; p<0,001) de los padres y en los conocimientos sobre actividad física (t=-2,58; p<0,05) de los niños. Los padres de los niños con mayor adherencia a la Dieta Mediterránea mejoraron sus conocimientos sobre hábitos saludables de manera significativa (ρ=0,75; p<0,01).Conclusiones: Son necesarias intervenciones educativas dirigidas a niños, padres y educadores para aumentar los conocimientos sobre alimentación saludable. Con intervenciones de educación alimentaria se consigue una mejora en los conocimientos de los padres, principales responsables de la alimentación de los menores

    Inclusion of the SDGs and application of the Student Team-Achievement Division methodology in the preparation of thermoplastic starch in the laboratory of the subject "Eco-efficient Materials”

    Full text link
    [EN] In the present work, the inclusion of the Sustainable Development Goals (SDG) was carried out in the laboratory practices of “Eco-efficient materials”. At the same time, the teaching methodology of the Student Team-Achievement Division (STAD) was implemented for the development of a laboratory practice. On the one hand, it was determined that the SDGs related to the subject are SDG 6 (clean water and sanitation), SDG 11 (sustainable cities and communities) and SDG 12 (responsible production and consumption). Through an evaluation it was observed that the students have a good understanding of the ODS and a high capacity to relate the activities of the subject with the contribution to the fulfillment of each objective, however, a continuing education that provides knowledge and skills is not considered important. to support sustainable development. On the other hand, the implementation of the STAD methodology showed a high level of acceptance by the students and proved to be efficient in increasing motivation and individual improvement. However, it is considered important to continue applying the technique to determine the long-term effect and obtain more accurate conclusions.[ES] En el presente trabajo se realizó la inclusión de los Objetivos del Desarrollo Sostenible (ODS) en las prácticas del laboratorio de la asignatura de “Materiales Ecoeficientes” y al mismo tiempo se implementó le metodología se enseñanza de trabajo en equipo-logro individual (TELI) para el desarrollo de una práctica de laboratorio. Por un lado, se determinó que las ODS relacionadas con la asignatura son el ODS 6 (agua limpia y saneamiento), ODS 11 (ciudades y comunidades sostenibles) y el ODS 12 (producción y consumo responsable) y mediante una evaluación se observó que los estudiantes tienen un buen entendimiento de las ODS y una alta capacidad de relación entre las actividades de la asignatura con el aporte al cumplimiento de cada objetivo, no obstante se considera importante una educación continua que proporcione conocimientos y habilidades para apoyar al desarrollo sostenible. Por el otro lado, la implementación de la metodología TELI mostró un alto nivel de aceptación por parte de los estudiantes y demostró ser eficiente para aumentar la motivación y superación individual. Sin embargo, se considera importante continuar con la aplicación de la técnica para determinar el efecto a la largo plazo y obtener conclusiones más certeras.Esta investigación fue financiada por el Proyecto PID2020-116496RB-C22 del ministerio de Ciencia e Innovación. Marina Patricia Arrieta agradece a PIE22.0506 de la Universidad Politécnica de Madrid. Cristina Pavon agradece a la subvención Santiago Grisolía (GRISOLIAP/2019/113) de la Generalitat Valenciana.Pavón Vargas, CP.; Aldas, M.; Arrieta, M.; Lopéz-Martínez, J. (2022). Inclusión de las ODS y aplicación de la metodología de Trabajo en Equipo-Logro individual en la preparación de almidón termoplástico en el laboratorio de la asignatura “Materiales Ecoeficientes”. Editorial Universitat Politècnica de València. 682-696. https://doi.org/10.4995/INRED2022.2022.1591168269

    On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications

    Full text link
    [EN] Poly(lactic acid) (PLA) is the most used biopolymer for food packaging applications. Several strategies have been made to improve PLA properties for extending its applications in the packaging field. Melt blending approaches are gaining considerable interest since they are easy, cost-effective and readily available processing technologies at the industrial level. With a similar melting temperature and high crystallinity, poly(hydroxybutyrate) (PHB) represents a good candidate to blend with PLA. The ability of PHB to act as a nucleating agent for PLA improves its mechanical resistance and barrier performance. With the dual objective to improve PLAPHB processing performance and to obtain stretchable materials, plasticizers are frequently added. Current trends to enhance PLA-PHB miscibility are focused on the development of composite and nanocomposites. PLA-PHB blends are also interesting for the controlled release of active compounds in the development of active packaging systems. This review explains the most relevant processing aspects of PLA-PHB based blends such as the influence of polymers molecular weight, the PLA-PHB composition as well as the thermal stability. It also summarizes the recent developments in PLA-PHB formulations with an emphasis on their performance with interest in the sustainable food packaging field. PLA-PHB blends shows highly promising perspectives for the replacement of traditional petrochemical based polymers currently used for food packaging.This research was performed within the framework of the project MAT2014-59242-C2-1-R supported by the Spanish Ministry of Economy and Competitiveness (MINECO). Marina Patricia Arrieta is a recipient of Juan de la Cierva Post-Doctoral Contract (FJCI-2014-20630) from the MINECO.Arrieta, MP.; Samper, M.; Aldas-Carrasco, MF.; López-Martínez, J. (2017). On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials. 10(9):1-26. https://doi.org/10.3390/ma10091008S126109Cleo, G., Isenring, E., Thomas, R., & Glasziou, P. (2017). Could habits hold the key to weight loss maintenance? A narrative review. Journal of Human Nutrition and Dietetics, 30(5), 655-664. doi:10.1111/jhn.12456Jin, T., & Zhang, H. (2008). Biodegradable Polylactic Acid Polymer with Nisin for Use in Antimicrobial Food Packaging. Journal of Food Science, 73(3), M127-M134. doi:10.1111/j.1750-3841.2008.00681.xCastro López, M. del M., Dopico García, S., Ares Pernas, A., López Vilariño, J. M., & González Rodríguez, M. V. (2012). Effect of PPG-PEG-PPG on the Tocopherol-Controlled Release from Films Intended for Food-Packaging Applications. Journal of Agricultural and Food Chemistry, 60(33), 8163-8170. doi:10.1021/jf301442pArrieta, M. P., Fortunati, E., Dominici, F., López, J., & Kenny, J. M. (2015). Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends. Carbohydrate Polymers, 121, 265-275. doi:10.1016/j.carbpol.2014.12.056Souza, V. G. L., & Fernando, A. L. (2016). Nanoparticles in food packaging: Biodegradability and potential migration to food—A review. Food Packaging and Shelf Life, 8, 63-70. doi:10.1016/j.fpsl.2016.04.001Lagaron, J. M., & Lopez-Rubio, A. (2011). Nanotechnology for bioplastics: opportunities, challenges and strategies. Trends in Food Science & Technology, 22(11), 611-617. doi:10.1016/j.tifs.2011.01.007Briassoulis, D., & Dejean, C. (2010). Critical Review of Norms and Standards for Biodegradable Agricultural Plastics Part Ι. Biodegradation in Soil. Journal of Polymers and the Environment, 18(3), 384-400. doi:10.1007/s10924-010-0168-1Avérous, L. (2004). Biodegradable Multiphase Systems Based on Plasticized Starch: A Review. Journal of Macromolecular Science, Part C: Polymer Reviews, 44(3), 231-274. doi:10.1081/mc-200029326Auras, R., Harte, B., & Selke, S. (2004). An Overview of Polylactides as Packaging Materials. Macromolecular Bioscience, 4(9), 835-864. doi:10.1002/mabi.200400043Kale, G., Kijchavengkul, T., Auras, R., Rubino, M., Selke, S. E., & Singh, S. P. (2007). Compostability of Bioplastic Packaging Materials: An Overview. Macromolecular Bioscience, 7(3), 255-277. doi:10.1002/mabi.200600168Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940Bor, Y., Alin, J., & Hakkarainen, M. (2012). Electrospray Ionization-Mass Spectrometry Analysis Reveals Migration of Cyclic Lactide Oligomers from Polylactide Packaging in Contact with Ethanolic Food Simulant. Packaging Technology and Science, 25(7), 427-433. doi:10.1002/pts.990Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Comprehensive Reviews in Food Science and Food Safety, 9(5), 552-571. doi:10.1111/j.1541-4337.2010.00126.xCarrasco, F., Cailloux, J., Sánchez-Jiménez, P. E., & Maspoch, M. L. (2014). Improvement of the thermal stability of branched poly(lactic acid) obtained by reactive extrusion. Polymer Degradation and Stability, 104, 40-49. doi:10.1016/j.polymdegradstab.2014.03.026Murariu, M., & Dubois, P. (2016). PLA composites: From production to properties. Advanced Drug Delivery Reviews, 107, 17-46. doi:10.1016/j.addr.2016.04.003Arrieta, M. P., & Peponi, L. (2017). Polyurethane based on PLA and PCL incorporated with catechin: Structural, thermal and mechanical characterization. European Polymer Journal, 89, 174-184. doi:10.1016/j.eurpolymj.2017.02.028Yuan, M. W., Qin, Y. Y., Yang, J. Y., Wu, Y., Yuan, M. L., & Li, H. L. (2013). Preparation and Characterization of Poly(L-Lactide-Co-ε-Caprolactone) Copolymer for Food Packaging Application. Advanced Materials Research, 779-780, 231-234. doi:10.4028/www.scientific.net/amr.779-780.231Arrieta, M. P., Samper, M. D., López, J., & Jiménez, A. (2014). Combined Effect of Poly(hydroxybutyrate) and Plasticizers on Polylactic acid Properties for Film Intended for Food Packaging. Journal of Polymers and the Environment, 22(4), 460-470. doi:10.1007/s10924-014-0654-yCruz-Romero, M. (2008). Crop-based biodegradable packaging and its environmental implications. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 3(074). doi:10.1079/pavsnnr20083074Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082Luzi, F., Fortunati, E., Jiménez, A., Puglia, D., Pezzolla, D., Gigliotti, G., … Torre, L. (2016). Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Industrial Crops and Products, 93, 276-289. doi:10.1016/j.indcrop.2016.01.045González-Ausejo, J., Sánchez-Safont, E., Lagarón, J. M., Balart, R., Cabedo, L., & Gámez-Pérez, J. (2017). Compatibilization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-poly(lactic acid) blends with diisocyanates. Journal of Applied Polymer Science, 134(20). doi:10.1002/app.44806Arrieta, M. P., Fortunati, E., Dominici, F., Rayón, E., López, J., & Kenny, J. M. (2014). PLA-PHB/cellulose based films: Mechanical, barrier and disintegration properties. Polymer Degradation and Stability, 107, 139-149. doi:10.1016/j.polymdegradstab.2014.05.010Ljungberg, N., & Wesslén, B. (2005). Preparation and Properties of Plasticized Poly(lactic acid) Films. Biomacromolecules, 6(3), 1789-1796. doi:10.1021/bm050098fFerri, J. M., Fenollar, O., Jorda-Vilaplana, A., García-Sanoguera, D., & Balart, R. (2016). Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/ polycaprolactone blends. Polymer International, 65(4), 453-463. doi:10.1002/pi.5079Garcia-Garcia, D., Ferri, J. M., Boronat, T., Lopez-Martinez, J., & Balart, R. (2016). Processing and characterization of binary poly(hydroxybutyrate) (PHB) and poly(caprolactone) (PCL) blends with improved impact properties. Polymer Bulletin, 73(12), 3333-3350. doi:10.1007/s00289-016-1659-6Khosravi-Darani, K. (2015). Application of Poly(hydroxyalkanoate) In Food Packaging: Improvements by Nanotechnology. Chemical and Biochemical Engineering Quarterly, 29(2), 275-285. doi:10.15255/cabeq.2014.2260Sánchez-Safont, E. L., González-Ausejo, J., Gámez-Pérez, J., Lagarón, J. M., & Cabedo, L. (2016). Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Purified Cellulose Fiber Composites by Melt Blending: Characterization and Degradation in Composting Conditions. Journal of Renewable Materials, 4(2), 123-132. doi:10.7569/jrm.2015.634127González-Ausejo, J., Sanchez-Safont, E., Lagaron, J. M., Olsson, R. T., Gamez-Perez, J., & Cabedo, L. (2017). Assessing the thermoformability of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(acid lactic) blends compatibilized with diisocyanates. Polymer Testing, 62, 235-245. doi:10.1016/j.polymertesting.2017.06.026Bucci, D. Z., Tavares, L. B. B., & Sell, I. (2005). PHB packaging for the storage of food products. Polymer Testing, 24(5), 564-571. doi:10.1016/j.polymertesting.2005.02.008Lenz, R. W., & Marchessault, R. H. (2005). Bacterial Polyesters:  Biosynthesis, Biodegradable Plastics and Biotechnology. Biomacromolecules, 6(1), 1-8. doi:10.1021/bm049700cMoire, L., Rezzonico, E., & Poirier, Y. (2003). Synthesis of novel biomaterials in plants. Journal of Plant Physiology, 160(7), 831-839. doi:10.1078/0176-1617-01030Gracida, J., Alba, J., Cardoso, J., & Perez-Guevara, F. (2004). Studies of biodegradation of binary blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) with poly(2-hydroxyethylmetacrilate) (PHEMA). Polymer Degradation and Stability, 83(2), 247-253. doi:10.1016/s0141-3910(03)00269-6Zhang, M., & Thomas, N. L. (2011). Blending polylactic acid with polyhydroxybutyrate: The effect on thermal, mechanical, and biodegradation properties. Advances in Polymer Technology, 30(2), 67-79. doi:10.1002/adv.20235Garcia-Garcia, D., Rayón, E., Carbonell-Verdu, A., Lopez-Martinez, J., & Balart, R. (2017). Improvement of the compatibility between poly(3-hydroxybutyrate) and poly(ε-caprolactone) by reactive extrusion with dicumyl peroxide. European Polymer Journal, 86, 41-57. doi:10.1016/j.eurpolymj.2016.11.018Bucci, D. Z., Tavares, L. B. B., & Sell, I. (2007). Biodegradation and physical evaluation of PHB packaging. Polymer Testing, 26(7), 908-915. doi:10.1016/j.polymertesting.2007.06.013Arrieta, M. P., Fortunati, E., Dominici, F., Rayón, E., López, J., & Kenny, J. M. (2014). Multifunctional PLA–PHB/cellulose nanocrystal films: Processing, structural and thermal properties. Carbohydrate Polymers, 107, 16-24. doi:10.1016/j.carbpol.2014.02.044S. de O. Patrício, P., Pereira, F. V., dos Santos, M. C., de Souza, P. P., Roa, J. P. B., & Orefice, R. L. (2012). Increasing the elongation at break of polyhydroxybutyrate biopolymer: Effect of cellulose nanowhiskers on mechanical and thermal properties. Journal of Applied Polymer Science, 127(5), 3613-3621. doi:10.1002/app.37811European Bioplasticshttp://www.european-bioplastics.org/market/Hu, Y., Sato, H., Zhang, J., Noda, I., & Ozaki, Y. (2008). Crystallization behavior of poly(l-lactic acid) affected by the addition of a small amount of poly(3-hydroxybutyrate). Polymer, 49(19), 4204-4210. doi:10.1016/j.polymer.2008.07.031Arrieta, M. P., López, J., López, D., Kenny, J. M., & Peponi, L. (2015). Development of flexible materials based on plasticized electrospun PLA–PHB blends: Structural, thermal, mechanical and disintegration properties. European Polymer Journal, 73, 433-446. doi:10.1016/j.eurpolymj.2015.10.036Calvão, P. S., Chenal, J.-M., Gauthier, C., Demarquette, N. R., Bogner, A., & Cavaille, J. Y. (2011). Understanding the mechanical and biodegradation behaviour of poly(hydroxybutyrate)/rubber blends in relation to their morphology. Polymer International, 61(3), 434-441. doi:10.1002/pi.3211Blümm, E., & Owen, A. J. (1995). Miscibility, crystallization and melting of poly(3-hydroxybutyrate)/ poly(l-lactide) blends. Polymer, 36(21), 4077-4081. doi:10.1016/0032-3861(95)90987-dChang, L., & Woo, E. M. (2012). Crystallization of poly(3-hydroxybutyrate) with stereocomplexed polylactide as biodegradable nucleation agent. Polymer Engineering & Science, 52(7), 1413-1419. doi:10.1002/pen.23081Ni, C., Luo, R., Xu, K., & Chen, G.-Q. (2009). Thermal and crystallinity property studies of poly (L-lactic acid) blended with oligomers of 3-hydroxybutyrate or dendrimers of hydroxyalkanoic acids. Journal of Applied Polymer Science, 111(4), 1720-1727. doi:10.1002/app.29182Vogel, C., & Siesler, H. W. (2008). Thermal Degradation of Poly(ɛ-caprolactone), Poly(L-lactic acid) and their Blends with Poly(3-hydroxy-butyrate) Studied by TGA/FT-IR Spectroscopy. Macromolecular Symposia, 265(1), 183-194. doi:10.1002/masy.200850520Arrieta, M. P., López, J., Hernández, A., & Rayón, E. (2014). Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50, 255-270. doi:10.1016/j.eurpolymj.2013.11.009Ohkoshi, I., Abe, H., & Doi, Y. (2000). Miscibility and solid-state structures for blends of poly[(S)-lactide] with atactic poly[(R,S)-3-hydroxybutyrate]. Polymer, 41(15), 5985-5992. doi:10.1016/s0032-3861(99)00781-8Tri, P. N., Domenek, S., Guinault, A., & Sollogoub, C. (2013). Crystallization behavior of poly(lactide)/poly(β-hydroxybutyrate)/talc composites. Journal of Applied Polymer Science, 129(6), 3355-3365. doi:10.1002/app.39056Zhang, L., Xiong, C., & Deng, X. (1996). Miscibility, crystallization and morphology of poly(β-hydroxybutyrate)/poly(d,l-lactide) blends. Polymer, 37(2), 235-241. doi:10.1016/0032-3861(96)81093-7Musioł, M., Sikorska, W., Adamus, G., Janeczek, H., Kowalczuk, M., & Rydz, J. (2015). (Bio)degradable polymers as a potential material for food packaging: studies on the (bio)degradation process of PLA/(R,S)-PHB rigid foils under industrial composting conditions. European Food Research and Technology, 242(6), 815-823. doi:10.1007/s00217-015-2611-yBartczak, Z., Galeski, A., Kowalczuk, M., Sobota, M., & Malinowski, R. (2013). Tough blends of poly(lactide) and amorphous poly([R,S]-3-hydroxy butyrate) – morphology and properties. European Polymer Journal, 49(11), 3630-3641. doi:10.1016/j.eurpolymj.2013.07.033Lim, L.-T., Auras, R., & Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science, 33(8), 820-852. doi:10.1016/j.progpolymsci.2008.05.004Drumright, R. E., Gruber, P. R., & Henton, D. E. (2000). Polylactic Acid Technology. Advanced Materials, 12(23), 1841-1846. doi:10.1002/1521-4095(200012)12:233.0.co;2-eJandas, P. J., Mohanty, S., & Nayak, S. K. (2013). Morphology and Thermal Properties of Renewable Resource-Based Polymer Blend Nanocomposites Influenced by a Reactive Compatibilizer. ACS Sustainable Chemistry & Engineering, 2(3), 377-386. doi:10.1021/sc400395sDong, W., Ma, P., Wang, S., Chen, M., Cai, X., & Zhang, Y. (2013). Effect of partial crosslinking on morphology and properties of the poly(β-hydroxybutyrate)/poly(d,l-lactic acid) blends. Polymer Degradation and Stability, 98(9), 1549-1555. doi:10.1016/j.polymdegradstab.2013.06.033Arrieta, M. P., López, J., López, D., Kenny, J. M., & Peponi, L. (2016). Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals. Industrial Crops and Products, 93, 290-301. doi:10.1016/j.indcrop.2015.12.058Arrieta, M. P., López, J., López, D., Kenny, J. M., & Peponi, L. (2016). Effect of chitosan and catechin addition on the structural, thermal, mechanical and disintegration properties of plasticized electrospun PLA-PHB biocomposites. Polymer Degradation and Stability, 132, 145-156. doi:10.1016/j.polymdegradstab.2016.02.027Toncheva, A., Spasova, M., Paneva, D., Manolova, N., & Rashkov, I. (2014). Polylactide (PLA)-Based Electrospun Fibrous Materials Containing Ionic Drugs as Wound Dressing Materials: A Review. International Journal of Polymeric Materials and Polymeric Biomaterials, 63(13), 657-671. doi:10.1080/00914037.2013.854240Abdelwahab, M. A., Flynn, A., Chiou, B.-S., Imam, S., Orts, W., & Chiellini, E. (2012). Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends. Polymer Degradation and Stability, 97(9), 1822-1828. doi:10.1016/j.polymdegradstab.2012.05.036Burgos, N., Armentano, I., Fortunati, E., Dominici, F., Luzi, F., Fiori, S., … Kenny, J. M. (2017). Functional Properties of Plasticized Bio-Based Poly(Lactic Acid)_Poly(Hydroxybutyrate) (PLA_PHB) Films for Active Food Packaging. Food and Bioprocess Technology, 10(4), 770-780. doi:10.1007/s11947-016-1846-3Kiziltas, A., Nazari, B., Erbas Kiziltas, E., Gardner, D. J., Han, Y., & Rushing, T. S. (2016). Method to reinforce polylactic acid with cellulose nanofibers via a polyhydroxybutyrate carrier system. Carbohydrate Polymers, 140, 393-399. doi:10.1016/j.carbpol.2015.12.059Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., … Kenny, J. M. (2015). Bio-based PLA_PHB plasticized blend films: Processing and structural characterization. LWT - Food Science and Technology, 64(2), 980-988. doi:10.1016/j.lwt.2015.06.032Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., … Kenny, J. M. (2015). Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polymer Letters, 9(7), 583-596. doi:10.3144/expresspolymlett.2015.55Murariu, M., Da Silva Ferreira, A., Alexandre, M., & Dubois, P. (2008). Polylactide (PLA) designed with desired end-use properties: 1. PLA compositions with low molecular weight ester-like plasticizers and related performances. Polymers for Advanced Technologies, 19(6), 636-646. doi:10.1002/pat.1131Martin, O., & Avérous, L. (2001). Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer, 42(14), 6209-6219. doi:10.1016/s0032-3861(01)00086-6Burgos, N., Tolaguera, D., Fiori, S., & Jiménez, A. (2013). Synthesis and Characterization of Lactic Acid Oligomers: Evaluation of Performance as Poly(Lactic Acid) Plasticizers. Journal of Polymers and the Environment, 22(2), 227-235. doi:10.1007/s10924-013-0628-5Martino, V. P., Jiménez, A., Ruseckaite, R. A., & Avérous, L. (2010). Structure and properties of clay nano-biocomposites based on poly(lactic acid) plasticized with polyadipates. Polymers for Advanced Technologies, 22(12), 2206-2213. doi:10.1002/pat.1747Courgneau, C., Domenek, S., Guinault, A., Avérous, L., & Ducruet, V. (2011). Analysis of the Structure-Properties Relationships of Different Multiphase Systems Based on Plasticized Poly(Lactic Acid). Journal of Polymers and the Environment, 19(2), 362-371. doi:10.1007/s10924-011-0285-5Maiza, M., Benaniba, M. T., Quintard, G., & Massardier-Nageotte, V. (2015). Biobased additive plasticizing Polylactic acid (PLA). Polímeros, 25(6), 581-590. doi:10.1590/0104-1428.1986Coltelli, M.-B., Maggiore, I. D., Bertoldo, M., Signori, F., Bronco, S., & Ciardelli, F. (2008). Poly(lactic acid) properties as a consequence of poly(butylene adipate-co-terephthalate) blending and acetyl tributyl citrate plasticization. Journal of Applied Polymer Science, 110(2), 1250-1262. doi:10.1002/app.28512Arrieta, M. P., López, J., Ferrándiz, S., & Peltzer, M. A. (2013). Characterization of PLA-limonene blends for food packaging applications. Polymer Testing, 32(4), 760-768. doi:10.1016/j.polymertesting.2013.03.016Fortunati, E., Luzi, F., Puglia, D., Dominici, F., Santulli, C., Kenny, J. M., & Torre, L. (2014). Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. European Polymer Journal, 56, 77-91. doi:10.1016/j.eurpolymj.2014.03.030Marina P. Arrieta, Juan López, Santiago Ferrándiz, & Mercedes A. Peltzer. (2015). EFFECT OF D-LIMONENE ON THE STABILIZATION OF POLY (LACTIC ACID). Acta Horticulturae, (1065), 719-725. doi:10.17660/actahortic.2015.1065.90Torres, A., Ilabaca, E., Rojas, A., Rodríguez, F., Galotto, M. J., Guarda, A., … Romero, J. (2017). Effect of processing conditions on the physical, chemical and transport properties of polylactic acid films containing thymol incorporated by supercritical impregnation. European Polymer Journal, 89, 195-210. doi:10.1016/j.eurpolymj.2017.01.019Ramos, M., Jiménez, A., Peltzer, M., & Garrigós, M. C. (2014). Development of novel nano-biocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging. Food Chemistry, 162, 149-155. doi:10.1016/j.foodchem.2014.04.026Salazar, R., Domenek, S., Courgneau, C., & Ducruet, V. (2012). Plasticization of poly(lactide) by sorption of volatile organic compounds at low concentration. Polymer Degradation and Stability, 97(10), 1871-1880. doi:10.1016/j.polymdegradstab.2012.03.047Grillo Fernandes, E., Pietrini, M., & Chiellini, E. (2001). Thermo-Mechanical and Morphological Characterization of Plasticized Poly[(R)-3-hydroxybutyric acid]. Macromolecular Symposia, 169(1), 157-164. doi:10.1002/masy.200451416Janigová, I., Lacı́k, I., & Chodák, I. (2002). Thermal degradation of plasticized poly(3-hydroxybutyrate) investigated by DSC. Polymer Degradation and Stability, 77(1), 35-41. doi:10.1016/s0141-3910(02)00077-0Erceg, M., Kovačić, T., & Klarić, I. (2005). Thermal degradation of poly(3-hydroxybutyrate) plasticized with acetyl tributyl citrate. Polymer Degradation and Stability, 90(2), 313-318. doi:10.1016/j.polymdegradstab.2005.04.048Wang, L., Zhu, W., Wang, X., Chen, X., Chen, G.-Q., & Xu, K. (2007). Processability modifica

    Implementación del método de aprendizaje activo y colaborativo en las prácticas de laboratorio de Materiales Ecoeficientes en modalidad virtual

    Full text link
    [EN] During the 2020/21 academic year, the active and collaborative learning methodology was implemented in the development of a laboratory practice of the Eco-efficient Materials course of the second year of the University Master's Degree in Engineering, Processing and Characterization of Materials, in virtual modality. The use of this methodology aims to promote student participation and increase their level of responsibility in the laboratory practice, making use of the advantages of a virtual modality. Before carrying out the practice, students were given a script and then an explanatory session and resolution of doubts was held. The practices were carried out in a virtual and synchronous way. The students were responsible for setting the parameters and the teacher was in charge of reproducing them in the laboratory. The objective of this work was to observe the behavior of the students in decision-making, to appreciate if they acquired the necessary knowledge for the development of the practice and to solve the problems that may arise during it. Subsequently, the learning methodology between a virtual and a face-to-face modality was compared, and an active and collaborative learning methodology was developed that can be applied in either of the two scenarios.[ES] Durante el curso 2020/21 se implementó la metodología de aprendizaje activo y colaborativo en el desarrollo de una práctica de laboratorio de la asignatura Materiales ecoeficientes del segundo curso del Máster Universitario en Ingeniería, Procesado y Caracterización de Materiales, en modalidad virtual. El uso de la metodología buscaba promover la participación de los estudiantes y aumentar su nivel de responsabilidad en la práctica, haciendo uso de las ventajas de una modalidad virtual. Antes de la realización de la práctica, se entregó a los alumnos un guión y después se realizó una sesión explicativa y de resolución de dudas. Las prácticas se realizaron de forma virtual y sincrónica. Los estudiantes eran los responsables de fijar los parámetros y el profesor el encargado de reproducirlas en el laboratorio. El objetivo de este trabajo fue observar el comportamiento de los alumnos en la toma de decisiones, apreciar si adquirían el conocimiento necesario para el desarrollo de la práctica y la resolución de los problemas que pueden surgir durante la misma. Posteriormente se comparó la metodología de aprendizaje entre una modalidad virtual y una presencial, y se desarrolló una metodología de aprendizaje activo y colaborativo que pueda aplicarse en cualquiera de los dos escenarios.Pavón Vargas, CP.; Aldas, M.; Samper Madrigal, MD.; López Martínez, J. (2021). Implementación del método de aprendizaje activo y colaborativo en las prácticas de laboratorio de Materiales Ecoeficientes en modalidad virtual. En IN-RED 2021: VII Congreso de Innovación Edicativa y Docencia en Red. Editorial Universitat Politècnica de València. 575-584. https://doi.org/10.4995/INRED2021.2021.13794OCS57558
    corecore