95 research outputs found

    Dialogue Design for a Robot-Based Face-Mirroring Game to Engage Autistic Children with Emotional Expressions

    Get PDF
    We present design strategies for Human Robot Interaction for school-aged autistic children with limited receptive language. Applying these strategies to the DE-ENIGMA project (large EU project addressing emotion recognition in autistic children) supported development of a new activity for in facial expression imitation whereby the robot imitates the child’s face to encourage the child to notice facial expressions in a play-based game. A usability case study with 15 typically-developing children aged 4–6 at an English-language school in the Netherlands was performed to observe the feasibility of the setup and make design revisions before exposing the robot to autistic children

    Automatic Classification of Autistic Child Vocalisations: A Novel Database and Results

    Get PDF
    Humanoid robots have in recent years shown great promise for supporting the educational needs of children on the autism spectrum. To further improve the efficacy of such interactions, user-adaptation strategies based on the individual needs of a child are required. In this regard, the proposed study assesses the suitability of a range of speech-based classification approaches for automatic detection of autism severity according to the com- monly used Social Responsiveness Scale ™ second edition (SRS- 2). Autism is characterised by socialisation limitations including child language and communication ability. When compared to neurotypical children of the same age these can be a strong indi- cation of severity. This study introduces a novel dataset of 803 utterances recorded from 14 autistic children aged between 4 – 10 years, during Wizard-of-Oz interactions with a humanoid robot. Our results demonstrate the suitability of support vector machines (SVMs) which use acoustic feature sets from multiple Interspeech C OM P AR E challenges. We also evaluate deep spec- trum features, extracted via an image classification convolutional neural network (CNN) from the spectrogram of autistic speech instances. At best, by using SVMs on the acoustic feature sets, we achieved a UAR of 73.7 % for the proposed 3-class task

    Temporal and Spatial Patterns of Ambient Endotoxin Concentrations in Fresno, California

    Get PDF
    BackgroundEndotoxins are found in indoor dust generated by human activity and pets, in soil, and adsorbed onto the surfaces of ambient combustion particles. Endotoxin concentrations have been associated with respiratory symptoms and the risk of atopy and asthma in children.ObjectiveWe characterized the temporal and spatial variability of ambient endotoxin in Fresno/Clovis, California, located in California's Central Valley, to identify correlates and potential predictors of ambient endotoxin concentrations in a cohort of children with asthma [Fresno Asthmatic Children's Environment Study (FACES)].MethodsBetween May 2001 and October 2004, daily ambient endotoxin and air pollutants were collected at the central ambient monitoring site of the California Air Resources Board in Fresno and, for shorter time periods, at 10 schools and indoors and outdoors at 84 residences in the community. Analyses were restricted to May-October, the dry months during which endotoxin concentrations are highest.ResultsDaily endotoxin concentration patterns were determined mainly by meteorologic factors, particularly the degree of air stagnation. Overall concentrations were lowest in areas distant from agricultural activities. Highest concentrations were found in areas immediately downwind from agricultural/pasture land. Among three other measured air pollutants [fine particulate matter, elemental carbon (a marker of traffic in Fresno), and coarse particulate matter (PMc)], PMc was the only pollutant correlated with endotoxin. Endotoxin, however, was the most spatially variable.ConclusionsOur data support the need to evaluate the spatial/temporal variability of endotoxin concentrations, rather than relying on a few measurements made at one location, in studies of exposure and and respiratory health effects, particularly in children with asthma and other chronic respiratory diseases

    Pulmonary hemodynamic responses to in utero ventilation in very immature fetal sheep

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The onset of ventilation at birth decreases pulmonary vascular resistance (PVR) resulting in a large increase in pulmonary blood flow (PBF). As the large cross sectional area of the pulmonary vascular bed develops late in gestation, we have investigated whether the ventilation-induced increase in PBF is reduced in immature lungs.</p> <p>Methods</p> <p>Surgery was performed in fetal sheep at 105 d GA (n = 7; term ~147 d) to insert an endotracheal tube, which was connected to a neonatal ventilation circuit, and a transonic flow probe was placed around the left pulmonary artery. At 110 d GA, fetuses (n = 7) were ventilated <it>in utero </it>(IUV) for 12 hrs while continuous measurements of PBF were made, fetuses were allowed to develop <it>in utero </it>for a further 7 days following ventilation.</p> <p>Results</p> <p>PBF changes were highly variable between animals, increasing from 12.2 ± 6.6 mL/min to a maximum of 78.1 ± 23.1 mL/min in four fetuses after 10 minutes of ventilation. In the remaining three fetuses, little change in PBF was measured in response to IUV. The increases in PBF measured in responding fetuses were not sustained throughout the ventilation period and by 2 hrs of IUV had returned to pre-IUV control values.</p> <p>Discussion and conclusion</p> <p>Ventilation of very immature fetal sheep <it>in utero </it>increased PBF in 57% of fetuses but this increase was not sustained for more than 2 hrs, despite continuing ventilation. Immature lungs can increase PBF during ventilation, however, the present studies show these changes are transient and highly variable.</p

    CD46 Protects against Chronic Obstructive Pulmonary Disease

    Get PDF
    BACKGROUND: Chronic obstructive pulmonary disease and emphysema develops in 15% of ex-smokers despite sustained quitting, while 10% are free of emphysema or severe lung obstruction. The cause of the incapacity of the immune system to clear the inflammation in the first group remains unclear. METHODS AND FINDINGS: We searched genes that were protecting ex-smokers without emphysema, using microarrays on portions of human lungs surgically removed; we found that loss of lung function in patients with chronic obstructive pulmonary disease and emphysema was associated with a lower expression of CD46 and verified this finding by qRT-PCR and flow cytometry. Also, there was a significant association among decreased CD46(+) cells with decreased CD4(+)T cells, apoptosis mediator CD95 and increased CD8(+)T cells that were protecting patients without emphysema or severe chronic obstructive pulmonary disease. CD46 not only regulates the production of T regulatory cells, which suppresses CD8(+)T cell proliferation, but also the complement cascade by degradation of C3b. These results were replicated in the murine smoking model, which showed increased C5a (produced by C3b) that suppressed IL12 mediated bias to T helper 1 cells and elastin co-precipitation with C3b, suggesting that elastin could be presented as an antigen. Thus, using ELISA from elastin peptides, we verified that 43% of the patients with severe early onset of chronic obstructive pulmonary disease tested positive for IgG to elastin in their serum compared to healthy controls. CONCLUSIONS: These data suggest that higher expression of CD46 in the lungs of ex-smoker protects them from emphysema and chronic obstructive pulmonary disease by clearing the inflammation impeding the proliferation of CD8(+) T cells and necrosis, achieved by production of T regulatory cells and degradation of C3b; restraining the complement cascade favors apoptosis over necrosis, protecting them from autoimmunity and chronic inflammation

    The renal cortical interstitium: morphological and functional aspects

    Get PDF
    The renal interstitial compartment, situated between basement membranes of epithelia and vessels, contains two contiguous cellular networks. One network is formed by interstitial fibroblasts, the second one by dendritic cells. Both are in intimate contact with each other. Fibroblasts are interconnected by junctions and connected to basement membranes of vessels and tubules by focal adhesions. Fibroblasts constitute the “skeleton” of the kidney. In the renal cortex, fibroblasts produce erythropoietin and are distinguished from other interstitial cells by their prominent F-actin cytoskeleton, abundance of rough endoplasmic reticulum, and by ecto-5′-nucleotidase expression in their plasma membrane. The resident dendritic cells belong to the mononuclear phagocyte system and fulfil a sentinel function. They are characterized by their expression of MHC class II and CD11c. The central situation of fibroblasts suggests that signals from tubules, vessels, and inflammatory cells converge in fibroblasts and elicit an integrated response. Following tubular damage and inflammatory signals fibroblasts proliferate, change to the myofibroblast phenotype and increase their collagen production, potentially resulting in renal fibrosis. The acquisition of a profibrotic phenotype by fibroblasts in renal diseases is generally considered a main causal event in the progression of chronic renal failure. However, it might also be seen as a repair process

    Antimicrobial proteins and polypeptides in pulmonary innate defence

    Get PDF
    Inspired air contains a myriad of potential pathogens, pollutants and inflammatory stimuli. In the normal lung, these pathogens are rarely problematic. This is because the epithelial lining fluid in the lung is rich in many innate immunity proteins and peptides that provide a powerful anti-microbial screen. These defensive proteins have anti-bacterial, anti- viral and in some cases, even anti-fungal properties. Their antimicrobial effects are as diverse as inhibition of biofilm formation and prevention of viral replication. The innate immunity proteins and peptides also play key immunomodulatory roles. They are involved in many key processes such as opsonisation facilitating phagocytosis of bacteria and viruses by macrophages and monocytes. They act as important mediators in inflammatory pathways and are capable of binding bacterial endotoxins and CPG motifs. They can also influence expression of adhesion molecules as well as acting as powerful anti-oxidants and anti-proteases. Exciting new antimicrobial and immunomodulatory functions are being elucidated for existing proteins that were previously thought to be of lesser importance. The potential therapeutic applications of these proteins and peptides in combating infection and preventing inflammation are the subject of ongoing research that holds much promise for the future

    Pharmacokinetic-Pharmacodynamic Modeling in Pediatric Drug Development, and the Importance of Standardized Scaling of Clearance.

    Get PDF
    Pharmacokinetic/pharmacodynamic (PKPD) modeling is important in the design and conduct of clinical pharmacology research in children. During drug development, PKPD modeling and simulation should underpin rational trial design and facilitate extrapolation to investigate efficacy and safety. The application of PKPD modeling to optimize dosing recommendations and therapeutic drug monitoring is also increasing, and PKPD model-based dose individualization will become a core feature of personalized medicine. Following extensive progress on pediatric PK modeling, a greater emphasis now needs to be placed on PD modeling to understand age-related changes in drug effects. This paper discusses the principles of PKPD modeling in the context of pediatric drug development, summarizing how important PK parameters, such as clearance (CL), are scaled with size and age, and highlights a standardized method for CL scaling in children. One standard scaling method would facilitate comparison of PK parameters across multiple studies, thus increasing the utility of existing PK models and facilitating optimal design of new studies

    Lung epithelium as a sentinel and effector system in pneumonia – molecular mechanisms of pathogen recognition and signal transduction

    Get PDF
    Pneumonia, a common disease caused by a great diversity of infectious agents is responsible for enormous morbidity and mortality worldwide. The bronchial and lung epithelium comprises a large surface between host and environment and is attacked as a primary target during lung infection. Besides acting as a mechanical barrier, recent evidence suggests that the lung epithelium functions as an important sentinel system against pathogens. Equipped with transmembranous and cytosolic pathogen-sensing pattern recognition receptors the epithelium detects invading pathogens. A complex signalling results in epithelial cell activation, which essentially participates in initiation and orchestration of the subsequent innate and adaptive immune response. In this review we summarize recent progress in research focussing on molecular mechanisms of pathogen detection, host cell signal transduction, and subsequent activation of lung epithelial cells by pathogens and their virulence factors and point to open questions. The analysis of lung epithelial function in the host response in pneumonia may pave the way to the development of innovative highly needed therapeutics in pneumonia in addition to antibiotics
    corecore