244 research outputs found

    On the rms-radius of the proton

    Full text link
    We study the world data on elastic electron-proton scattering in order to determine the proton charge rms-radius. After accounting for the Coulomb distortion and using a parameterization that allows to deal properly with the higher moments we find a radius of 0.895+-0.018 fm, which is significantly larger than the radii used in the past.Comment: 9 pages, 2 figures, submitted to Phys.Lett.

    El teletrabajo y la productividad laboral en los trabajadores de la Municipalidad Distrital de Salitral Morropón, 2022

    Get PDF
    La presente investigación se ejecutó en la Municipalidad Distrital de Salitral, provincia de Morropón, departamento de Piura; con el objetivo de determinar la relación que existe entre el teletrabajo y la productividad laboral en los trabajadores de dicha Municipalidad. La metodología se realizó bajo un enfoque cuantitativo, con un nivel de investigación correlacional, con un tipo de investigación básica con diseño no experimental. La población está integrada por 20 trabajadores y que al ser la muestra censal es aplicado a la población total de estudio, se aplicó la técnica de la encuesta y el instrumento fue el cuestionario, usando la escala de Likert, adicionalmente los instrumentos fueron validados a través del juicio de expertos aplicando una confiabilidad de Alfa de Cronbach. Como principal resultado se obtuvo que el 60% de los trabajadores perciben el teletrabajo como positivo, el 15% como relativo y el 25% como negativo de igual manera el 70% de los trabajadores perciben la productividad laboral como positivo, el 10% como relativo y el 20% como negativo. Finalmente, entre las variables existe una relación directa y significativa, obteniendo un valor de 0,891 que corrobora un grado muy significativo tal como se había indicado en la hipótesis de investigación

    The immediate environment of the Class 0 protostar VLA1623, on scales of ~50-100 AU, observed at millimetre and centimetre wavelengths

    Full text link
    We present high angular resolution observations, taken with the Very Large Array (VLA) and Multiple Element Radio Linked Interferometer Network (MERLIN) radio telescopes, at 7mm and 4.4cm respectively, of the prototype Class 0 protostar VLA1623. At 7mm we detect two sources (VLA1623A & B) coincident with the two previously detected components at the centre of this system. The separation between the two is 1.2arcsec, or ~170AU at an assumed distance of 139pc. The upper limit to the size of the source coincident with each component of VLA1623 is ~0.7arcsec, in agreement with previous findings. This corresponds to a diameter of ~100AU at an assumed distance of 139pc. Both components show the same general trend in their broadband continuum spectra, of a steeper dust continuum spectrum shortward of 7mm and a flatter spectrum longward of this. We estimate an upper limit to the VLA1623A disc mass of <0.13Msol and an upper limit to its radius of ~50AU. The longer wavelength data have a spectral index of \alpha~0.6+/-0.3. This is too steep to be explained by optically thin free-free emission. It is most likely due to optically thick free-free emission. Alternatively, we speculate that it might be due to the formation of larger grains or planetesimals in the circumstellar disc. We estimate the mass of VLA1623B to be <0.15M$sol. We can place a lower limit to its size of ~30x7 AU, and an upper limit to its diameter of ~100AU. The longer wavelength data of VLA1623B also have a spectral index of \alpha~0.6+/-0.3. The nature of VLA1623B remains a matter of debate. It could be a binary companion to the protostar, or a knot in the radio jet from VLA1623A.Comment: 7 pages, 3 figures, 1 table, accepted for publication in MNRA

    Self calibration of gravitational shear-galaxy intrinsic ellipticity correlation in weak lensing surveys

    Full text link
    The galaxy intrinsic alignment is a severe challenge to precision cosmic shear measurement. We propose to self-calibrate the induced gravitational shear-galaxy intrinsic ellipticity correlation (the GI correlation, \citealt{Hirata04b}) in weak lensing surveys with photometric redshift measurement. (1) We propose a method to extract the intrinsic ellipticity-galaxy density cross correlation (I-g) from the galaxy ellipticity-density measurement in the same redshift bin. (2) We also find a generic scaling relation to convert the extracted I-g correlation to the demanded GI correlation. We perform concept study under simplified conditions and demonstrate its capability to significantly reduce the GI contamination. We discuss the impact of various complexities on the two key ingredients of the self-calibration technique, namely the method to extract the I-g correlation and the scaling relation between the I-g and the GI correlation. We expect none of them is likely able to completely invalidate the proposed self-calibration technique.Comment: 14 pages, 4 figures. Heavily expanded version. No changes in major results and conclusions. Accepted to Ap

    Optimising cosmic shear surveys to measure modifications to gravity on cosmic scales

    Full text link
    We consider how upcoming photometric large scale structure surveys can be optimized to measure the properties of dark energy and possible cosmic scale modifications to General Relativity in light of realistic astrophysical and instrumental systematic uncertainities. In particular we include flexible descriptions of intrinsic alignments, galaxy bias and photometric redshift uncertainties in a Fisher Matrix analysis of shear, position and position-shear correlations, including complementary cosmological constraints from the CMB. We study the impact of survey tradeoffs in depth versus breadth, and redshift quality. We parameterise the results in terms of the Dark Energy Task Force figure of merit, and deviations from General Relativity through an analagous Modified Gravity figure of merit. We find that intrinsic alignments weaken the dependence of figure of merit on area and that, for a fixed observing time, a fiducial Stage IV survey plateaus above roughly 10,000deg2 for DE and peaks at about 5,000deg2 as the relative importance of IAs at low redshift penalises wide, shallow surveys. While reducing photometric redshift scatter improves constraining power, the dependence is shallow. The variation in constraining power is stronger once IAs are included and is slightly more pronounced for MG constraints than for DE. The inclusion of intrinsic alignments and galaxy position information reduces the required prior on photometric redshift accuracy by an order of magnitude for both the fiducial Stage III and IV surveys, equivalent to a factor of 100 reduction in the number of spectroscopic galaxies required to calibrate the photometric sample.Comment: 13 pages, 6 figures. Fixed an error in equation 19 which changes the right hand panels of figures 1 and 2, and modifies conclusions on the results for fixed observing tim

    Dispersion-Theoretical Analysis of the Nucleon Electromagnetic Formfactors

    Full text link
    Dispersion relations allow for a coherent description of the nucleon electromagnetic form factors measured over a large range of momentum transfer, Q2035Q^2 \simeq 0 \ldots 35 GeV2^2. Including constraints from unitarity and perturbative QCD, we present a novel parametrisation of the absorptive parts of the various isoscalar and isovector nucleon form factors. Using the current world data, we obtain results for the electromagnetic form factors, nucleon radii and meson couplings. We stress the importance of measurements at large momentum transfer to test the predictions of perturbative QCD.Comment: 33 pp, RevTEX or plain LaTeX, 7 figures (in ffig.uu

    Constraining primordial non-Gaussianity with future galaxy surveys

    Full text link
    We study the constraining power on primordial non-Gaussianity of future surveys of the large-scale structure of the Universe for both near-term surveys (such as the Dark Energy Survey - DES) as well as longer term projects such as Euclid and WFIRST. Specifically we perform a Fisher matrix analysis forecast for such surveys, using DES-like and Euclid-like configurations as examples, and take account of any expected photometric and spectroscopic data. We focus on two-point statistics and we consider three observables: the 3D galaxy power spectrum in redshift space, the angular galaxy power spectrum, and the projected weak-lensing shear power spectrum. We study the effects of adding a few extra parameters to the basic LCDM set. We include the two standard parameters to model the current value for the dark energy equation of state and its time derivative, w_0, w_a, and we account for the possibility of primordial non-Gaussianity of the local, equilateral and orthogonal types, of parameter fNL and, optionally, of spectral index n_fNL. We present forecasted constraints on these parameters using the different observational probes. We show that accounting for models that include primordial non-Gaussianity does not degrade the constraint on the standard LCDM set nor on the dark-energy equation of state. By combining the weak lensing data and the information on projected galaxy clustering, consistently including all two-point functions and their covariance, we find forecasted marginalised errors sigma (fNL) ~ 3, sigma (n_fNL) ~ 0.12 from a Euclid-like survey for the local shape of primordial non-Gaussianity, while the orthogonal and equilateral constraints are weakened for the galaxy clustering case, due to the weaker scale-dependence of the bias. In the lensing case, the constraints remain instead similar in all configurations.Comment: 20 pages, 10 Figures. Minor modifications; accepted by MNRA

    Nucleon electromagnetic form factors and polarization observables in space-like and time-like regions

    Full text link
    We perform a global analysis of the experimental data of the electromagnetic nucleon form factors, in space-like and time-like regions. We give the expressions of the observables in annihilation processes, such as p+pˉ++p+\bar{p}\to \ell^+ +\ell^- , =e\ell=e or μ\mu, in terms of form factors. We discuss some of the phenomenological models proposed in the literature for the space-like region, and consider their analytical continuation to the time-like region. After determining the parameters through a fit on the available data, we give predictions for the observables which will be experimentally accessible with large statistics, polarized annihilation reactions.Comment: 25 pages, 5 figures 7 table

    Magnetism in reduced dimensions

    Get PDF
    We propose a short overview of a few selected issues of magnetism in reduced dimensions, which are the most relevant to set the background for more specialized contributions to the present Special Issue. Magnetic anisotropy in reduced dimensions is discussed, on a theoretical basis, then with experimental reports and views from surface to single-atom anisotropy. Then conventional magnetization states are reviewed, including macrospins, single domains, multidomains, and domain walls in stripes. Dipolar coupling is examined for lateral interactions in arrays, and for interlayer interactions in films and dots. Finally thermally-assisted magnetization reversal and superparamagnetism are presented. For each topic we sought a balance between well established knowledge and recent developments.Comment: 13 pages. Part of a Special Issue of the C. R. Physique devoted to spinelectronics (2005
    corecore