420 research outputs found

    Integration of a priori gene set information into genome-wide association studies

    Get PDF
    In genome-wide association studies (GWAS) genetic markers are often ranked to select genes for further pursuit. Especially for moderately associated and interrelated genes, information on genes and pathways may improve the selection. We applied and combined two main approaches for data integration to a GWAS for rheumatoid arthritis, gene set enrichment analysis (GSEA) and hierarchical Bayes prioritization (HBP). Many associated genes are located in the HLA region on 6p21. However, the ranking lists of genes and gene sets differ considerably depending on the chosen approach: HBP changes the ranking only slightly and primarily contains HLA genes in the top 100 gene lists. GSEA includes also many non-HLA genes

    Iam hiQ-A Novel Pair of Accuracy Indices for Imputed Genotypes

    Get PDF
    BACKGROUND: Imputation of untyped markers is a standard tool in genome-wide association studies to close the gap between directly genotyped and other known DNA variants. However, high accuracy with which genotypes are imputed is fundamental. Several accuracy measures have been proposed and some are implemented in imputation software, unfortunately diversely across platforms. In the present paper, we introduce Iam hiQ, an independent pair of accuracy measures that can be applied to dosage files, the output of all imputation software. Iam (imputation accuracy measure) quantifies the average amount of individual-specific versus population-specific genotype information in a linear manner. hiQ (heterogeneity in quantities of dosages) addresses the inter-individual heterogeneity between dosages of a marker across the sample at hand. RESULTS: Applying both measures to a large case-control sample of the International Lung Cancer Consortium (ILCCO), comprising 27,065 individuals, we found meaningful thresholds for Iam and hiQ suitable to classify markers of poor accuracy. We demonstrate how Manhattan-like plots and moving averages of Iam and hiQ can be useful to identify regions enriched with less accurate imputed markers, whereas these regions would by missed when applying the accuracy measure info (implemented in IMPUTE2). CONCLUSION: We recommend using Iam hiQ additional to other accuracy scores for variant filtering before stepping into the analysis of imputed GWAS data

    Nonparametric longitudinal allele-sharing model

    Get PDF
    Basically no methods are available for the analysis of quantitative traits in longitudinal genetic epidemiological studies. We introduce a nonparametric factorial design for longitudinal data on independent sib pairs, modelling the phenotypic quadratic differences as the dependent variable. Factors are the number of alleles shared identically by descent (IBD) and the age categories at which the dependent variable is measured, allowing for dependence due to age. To identify a linked marker a rank statistic tests the influence of IBD group on phenotypic quadratic differences. No assumptions are made on normality or variances of the dependent variable. We apply our method to 71 sib pairs from the Framingham Heart Study data provided at the Genetic Analysis Workshop 13. For all 15 available markers on chromosome 17 we analyzed the influence on systolic blood pressure. In addition, different selection strategies to sample from the whole data are discussed

    Surrogate phenotype definition for alcohol use disorders: a genome-wide search for linkage and association

    Get PDF
    For the identification of susceptibility loci in complex diseases the choice of the target phenotype is very important. We compared results of genome-wide searches for linkage or for association related to three phenotypes for alcohol use disorder. These are a behavioral score BQ, based on a 12-item questionnaire about drinking behavior and the subject's report of drinking-related health problems, and ERP pattern and ERP magnitude, both derived from the eyes closed resting ERP measures to quantify brain activity. Overall, we were able to identify 11 candidate regions for linkage. Only two regions were found to be related to both BQ and one of the ERP phenotypes. The genome-wide search for association using single-nucleotide polymorphisms did not yield interesting leads

    \u3ci\u3eIam hiQ\u3c/i\u3e—A Novel Pair of Accuracy Indices for Imputed Genotypes

    Get PDF
    Background: Imputation of untyped markers is a standard tool in genome-wide association studies to close the gap between directly genotyped and other known DNA variants. However, high accuracy with which genotypes are imputed is fundamental. Several accuracy measures have been proposed and some are implemented in imputation software, unfortunately diversely across platforms. In the present paper, we introduce Iam hiQ, an independent pair of accuracy measures that can be applied to dosage files, the output of all imputation software. Iam (imputation accuracy measure) quantifies the average amount of individual-specific versus population-specific genotype information in a linear manner. hiQ (heterogeneity in quantities of dosages) addresses the inter-individual heterogeneity between dosages of a marker across the sample at hand. Results: Applying both measures to a large case–control sample of the International Lung Cancer Consortium (ILCCO), comprising 27,065 individuals, we found meaningful thresholds for Iam and hiQ suitable to classify markers of poor accuracy. We demonstrate how Manhattan-like plots and moving averages of Iam and hiQ can be useful to identify regions enriched with less accurate imputed markers, whereas these regions would by missed when applying the accuracy measure info (implemented in IMPUTE2). Conclusion: We recommend using Iam hiQ additional to other accuracy scores for variant filtering before stepping into the analysis of imputed GWAS data

    Constitutivism

    Get PDF
    A brief explanation and overview of constitutivism

    The Ursinus Weekly, June 12, 1908

    Get PDF
    Baccalaureate service • Class Day exercises • Commencement Day exercises • Junior oratorical contest • Alumni oration • Baseball • Literary societies • Baseball resume • Notable wedding • Evangelical conference • Charmidean banquet • Alumni luncheon • Literary Supplement: Charles Darwin; The birthday anniversary; Ulrich Zwingli: a contrast with Martin Luther; The school and the convent; The decisionhttps://digitalcommons.ursinus.edu/weekly/2912/thumbnail.jp

    Informed Conditioning on Clinical Covariates Increases Power in Case-Control Association Studies

    Get PDF
    Genetic case-control association studies often include data on clinical covariates, such as body mass index (BMI), smoking status, or age, that may modify the underlying genetic risk of case or control samples. For example, in type 2 diabetes, odds ratios for established variants estimated from low–BMI cases are larger than those estimated from high–BMI cases. An unanswered question is how to use this information to maximize statistical power in case-control studies that ascertain individuals on the basis of phenotype (case-control ascertainment) or phenotype and clinical covariates (case-control-covariate ascertainment). While current approaches improve power in studies with random ascertainment, they often lose power under case-control ascertainment and fail to capture available power increases under case-control-covariate ascertainment. We show that an informed conditioning approach, based on the liability threshold model with parameters informed by external epidemiological information, fully accounts for disease prevalence and non-random ascertainment of phenotype as well as covariates and provides a substantial increase in power while maintaining a properly controlled false-positive rate. Our method outperforms standard case-control association tests with or without covariates, tests of gene x covariate interaction, and previously proposed tests for dealing with covariates in ascertained data, with especially large improvements in the case of case-control-covariate ascertainment. We investigate empirical case-control studies of type 2 diabetes, prostate cancer, lung cancer, breast cancer, rheumatoid arthritis, age-related macular degeneration, and end-stage kidney disease over a total of 89,726 samples. In these datasets, informed conditioning outperforms logistic regression for 115 of the 157 known associated variants investigated (P-value = 1×10910^{−9}). The improvement varied across diseases with a 16% median increase in χ2 test statistics and a commensurate increase in power. This suggests that applying our method to existing and future association studies of these diseases may identify novel disease loci

    Replication of Lung Cancer Susceptibility Loci at Chromosomes 15q25, 5p15, and 6p21: A Pooled Analysis From the International Lung Cancer Consortium

    Get PDF
    Background Genome-wide association studies have identified three chromosomal regions at 15q25, 5p15, and 6p21 as being associated with the risk of lung cancer. To confirm these associations in independent studies and investigate heterogeneity of these associations within specific subgroups, we conducted a coordinated genotyping study within the International Lung Cancer Consortium based on independent studies that were not included in previous genome-wide association studies. Methods Genotype data for single-nucleotide polymorphisms at chromosomes 15q25 (rs16969968, rs8034191), 5p15 (rs2736100, rs402710), and 6p21 (rs2256543, rs4324798) from 21 case-control studies for 11 645 lung cancer case patients and 14 954 control subjects, of whom 85% were white and 15% were Asian, were pooled. Associations between the variants and the risk of lung cancer were estimated by logistic regression models. All statistical tests were two-sided. Results Associations between 15q25 and the risk of lung cancer were replicated in white ever-smokers (rs16969968: odds ratio [OR] = 1.26, 95% confidence interval [CI] = 1.21 to 1.32, Ptrend = 2 × 10−26), and this association was stronger for those diagnosed at younger ages. There was no association in never-smokers or in Asians between either of the 15q25 variants and the risk of lung cancer. For the chromosome 5p15 region, we confirmed statistically significant associations in whites for both rs2736100 (OR = 1.15, 95% CI = 1.10 to 1.20, Ptrend = 1 × 10−10) and rs402710 (OR = 1.14, 95% CI = 1.09 to 1.19, Ptrend = 5 × 10−8) and identified similar associations in Asians (rs2736100: OR = 1.23, 95% CI = 1.12 to 1.35, Ptrend = 2 × 10−5; rs402710: OR = 1.15, 95% CI = 1.04 to 1.27, Ptrend = .007). The associations between the 5p15 variants and lung cancer differed by histology; odds ratios for rs2736100 were highest in adenocarcinoma and for rs402710 were highest in adenocarcinoma and squamous cell carcinomas. This pattern was observed in both ethnic groups. Neither of the two variants on chromosome 6p21 was associated with the risk of lung cancer. Conclusions In this international genetic association study of lung cancer, previous associations found in white populations were replicated and new associations were identified in Asian populations. Future genetic studies of lung cancer should include detailed stratification by histolog
    corecore