34 research outputs found
Online Makespan Minimization with Parallel Schedules
In online makespan minimization a sequence of jobs
has to be scheduled on identical parallel machines so as to minimize the
maximum completion time of any job. We investigate the problem with an
essentially new model of resource augmentation. Here, an online algorithm is
allowed to build several schedules in parallel while processing . At
the end of the scheduling process the best schedule is selected. This model can
be viewed as providing an online algorithm with extra space, which is invested
to maintain multiple solutions. The setting is of particular interest in
parallel processing environments where each processor can maintain a single or
a small set of solutions.
We develop a (4/3+\eps)-competitive algorithm, for any 0<\eps\leq 1, that
uses a number of 1/\eps^{O(\log (1/\eps))} schedules. We also give a
(1+\eps)-competitive algorithm, for any 0<\eps\leq 1, that builds a
polynomial number of (m/\eps)^{O(\log (1/\eps) / \eps)} schedules. This value
depends on but is independent of the input . The performance
guarantees are nearly best possible. We show that any algorithm that achieves a
competitiveness smaller than 4/3 must construct schedules. Our
algorithms make use of novel guessing schemes that (1) predict the optimum
makespan of a job sequence to within a factor of 1+\eps and (2)
guess the job processing times and their frequencies in . In (2) we
have to sparsify the universe of all guesses so as to reduce the number of
schedules to a constant.
The competitive ratios achieved using parallel schedules are considerably
smaller than those in the standard problem without resource augmentation
GRO Report - August 2015
Relative worst order analysis is a supplement or alternative to competitive
analysis which has been shown to give results more in accordance with observed
behavior of online algorithms for a range of different online problems. The
contribution of this paper is twofold. First, it adds the static list accessing
problem to the collection of online problems where relative worst order
analysis gives better results. Second, and maybe more interesting, it adds the
non-trivial supplementary proof technique of list factoring to the theoretical
toolbox for relative worst order analysis
Greedy D-Approximation Algorithm for Covering with Arbitrary Constraints and Submodular Cost
This paper describes a simple greedy D-approximation algorithm for any
covering problem whose objective function is submodular and non-decreasing, and
whose feasible region can be expressed as the intersection of arbitrary (closed
upwards) covering constraints, each of which constrains at most D variables of
the problem. (A simple example is Vertex Cover, with D = 2.) The algorithm
generalizes previous approximation algorithms for fundamental covering problems
and online paging and caching problems
Origin and Evolution of Saturn's Ring System
The origin and long-term evolution of Saturn's rings is still an unsolved
problem in modern planetary science. In this chapter we review the current
state of our knowledge on this long-standing question for the main rings (A,
Cassini Division, B, C), the F Ring, and the diffuse rings (E and G). During
the Voyager era, models of evolutionary processes affecting the rings on long
time scales (erosion, viscous spreading, accretion, ballistic transport, etc.)
had suggested that Saturn's rings are not older than 100 My. In addition,
Saturn's large system of diffuse rings has been thought to be the result of
material loss from one or more of Saturn's satellites. In the Cassini era, high
spatial and spectral resolution data have allowed progress to be made on some
of these questions. Discoveries such as the ''propellers'' in the A ring, the
shape of ring-embedded moonlets, the clumps in the F Ring, and Enceladus' plume
provide new constraints on evolutionary processes in Saturn's rings. At the
same time, advances in numerical simulations over the last 20 years have opened
the way to realistic models of the rings's fine scale structure, and progress
in our understanding of the formation of the Solar System provides a
better-defined historical context in which to understand ring formation. All
these elements have important implications for the origin and long-term
evolution of Saturn's rings. They strengthen the idea that Saturn's rings are
very dynamical and rapidly evolving, while new arguments suggest that the rings
could be older than previously believed, provided that they are regularly
renewed. Key evolutionary processes, timescales and possible scenarios for the
rings's origin are reviewed in the light of tComment: Chapter 17 of the book ''Saturn After Cassini-Huygens'' Saturn from
Cassini-Huygens, Dougherty, M.K.; Esposito, L.W.; Krimigis, S.M. (Ed.) (2009)
537-57
The shape of the <i>T</i><sub>z</sub> = +1 nucleus <sup>94</sup>Pd and the role of proton-neutron interactions on the structure of its excited states
Reduced transition probabilities have been extracted between excited, yrast states in the N = Z + 2 nucleus 94Pd. The transitions of interest were observed following decays of the Iπ = 14+ , Ex = 2129-keV isomeric state, which was populated following the projectile fragmentation of a 124Xe primary beam at the GSI Helmholtzzentrum für Schwerionenforschung accelerator facility as part of FAIR Phase-0. Experimental information regarding the reduced E2 transition strengths for the decays of the yrast 8+ and 6+ states was determined following isomer-delayed Eγ1 − Eγ2 − △T2,1 coincidence method, using the LaBr3(Ce)-based FATIMA fast-timing coincidence gamma-ray array, which allowed direct determination of lifetimes of states in 94Pd using the Generalized Centroid Difference (GCD) method. The experimental value for the half-life of the yrast 8+ state of 755(106) ps results in a reduced transition probability of B(E2:8+ →6+ ) = 205+34 −25 e2fm4 , which enables a precise verification of shell-model calculations for this unique system, lying directly between the N = Z line and the N = 50 neutron shell closure. The determined B(E2) value provides an insight into the purity of (g9/2)n configurations in competition with admixtures from excitations between the (lower) N = 3 pf and (higher) N = 4 gds orbitals for the first time. The results indicate weak collectivity expected for near-zero quadrupole deformation and an increasing importance of the T = 0 proton-neutron interaction at N = 48
Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume
The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes