9 research outputs found

    Heritability of Cardiovascular and Personality Traits in 6,148 Sardinians

    Get PDF
    In family studies, phenotypic similarities between relatives yield information on the overall contribution of genes to trait variation. Large samples are important for these family studies, especially when comparing heritability between subgroups such as young and old, or males and females. We recruited a cohort of 6,148 participants, aged 14–102 y, from four clustered towns in Sardinia. The cohort includes 34,469 relative pairs. To extract genetic information, we implemented software for variance components heritability analysis, designed to handle large pedigrees, analyze multiple traits simultaneously, and model heterogeneity. Here, we report heritability analyses for 98 quantitative traits, focusing on facets of personality and cardiovascular function. We also summarize results of bivariate analyses for all pairs of traits and of heterogeneity analyses for each trait. We found a significant genetic component for every trait. On average, genetic effects explained 40% of the variance for 38 blood tests, 51% for five anthropometric measures, 25% for 20 measures of cardiovascular function, and 19% for 35 personality traits. Four traits showed significant evidence for an X-linked component. Bivariate analyses suggested overlapping genetic determinants for many traits, including multiple personality facets and several traits related to the metabolic syndrome; but we found no evidence for shared genetic determinants that might underlie the reported association of some personality traits and cardiovascular risk factors. Models allowing for heterogeneity suggested that, in this cohort, the genetic variance was typically larger in females and in younger individuals, but interesting exceptions were observed. For example, narrow heritability of blood pressure was approximately 26% in individuals more than 42 y old, but only approximately 8% in younger individuals. Despite the heterogeneity in effect sizes, the same loci appear to contribute to variance in young and old, and in males and females. In summary, we find significant evidence for heritability of many medically important traits, including cardiovascular function and personality. Evidence for heterogeneity by age and sex suggests that models allowing for these differences will be important in mapping quantitative traits

    The GLUT9 Gene Is Associated with Serum Uric Acid Levels in Sardinia and Chianti Cohorts

    Get PDF
    High serum uric acid levels elevate pro-inflammatory–state gout crystal arthropathy and place individuals at high risk for cardiovascular morbidity and mortality. Genome-wide scans in the genetically isolated Sardinian population identified variants associated with serum uric acid levels as a quantitative trait. They mapped within GLUT9, a Chromosome 4 glucose transporter gene predominantly expressed in liver and kidney. SNP rs6855911 showed the strongest association (p = 1.84 × 10−16), along with eight others (p = 7.75 × 10−16 to 6.05 × 10−11). Individuals homozygous for the rare allele of rs6855911 (minor allele frequency = 0.26) had 0.6 mg/dl less uric acid than those homozygous for the common allele; the results were replicated in an unrelated cohort from Tuscany. Our results suggest that polymorphisms in GLUT9 could affect glucose metabolism and uric acid synthesis and/or renal reabsorption, influencing serum uric acid levels over a wide range of values

    Newly identified loci that influence lipid concentrations and risk of coronary artery disease

    Get PDF
    To identify genetic variants influencing plasma lipid concentrations, we first used genotype imputation and meta-analysis to combine three genome-wide scans totaling 8,816 individuals and comprising 6,068 individuals specific to our study (1,874 individuals from the FUSION study of type 2 diabetes and 4,184 individuals from the SardiNIA study of aging-associated variables) and 2,758 individuals from the Diabetes Genetics Initiative, reported in a companion study in this issue. We subsequently examined promising signals in 11,569 additional individuals. Overall, we identify strongly associated variants in eleven loci previously implicated in lipid metabolism (ABCA1, the APOA5-APOA4-APOC3-APOA1 and APOE-APOC clusters, APOB, CETP, GCKR, LDLR, LPL, LIPC, LIPG and PCSK9) and also in several newly identified loci (near MVK-MMAB and GALNT2, with variants primarily associated with high-density lipoprotein (HDL) cholesterol; near SORT1, with variants primarily associated with low-density lipoprotein (LDL) cholesterol; near TRIB1, MLXIPL and ANGPTL3, with variants primarily associated with triglycerides; and a locus encompassing several genes near NCAN, with variants strongly associated with both triglycerides and LDL cholesterol). Notably, the 11 independent variants associated with increased LDL cholesterol concentrations in our study also showed increased frequency in a sample of coronary artery disease cases versus controls

    Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits

    Get PDF
    The obesity epidemic is responsible for a substantial economic burden in developed countries and is a major risk factor for type 2 diabetes and cardiovascular disease. The disease is the result not only of several environmental risk factors, but also of genetic predisposition. To take advantage of recent advances in gene-mapping technology, we executed a genome-wide association scan to identify genetic variants associated with obesity-related quantitative traits in the genetically isolated population of Sardinia. Initial analysis suggested that several SNPs in the FTO and PFKP genes were associated with increased BMI, hip circumference, and weight. Within the FTO gene, rs9930506 showed the stronges

    Phosphodiesterase 8B Gene Variants Are Associated with Serum TSH Levels and Thyroid Function

    Get PDF
    Thyroid-stimulating hormone (TSH) controls thyroid growth and hormone secretion through binding to its G protein-coupled receptor (TSHR) and production of cyclic AMP (cAMP). Serum TSH is a sensitive indicator of thyroid function, and overt abnormalities in thyroid function lead to common endocrine disorders affecting ∼10% of individuals over a life span. By genotyping 362,129 SNPs in 4,300 Sardinians, we identified a strong association (p = 1.3 × 10−11) between alleles of rs4704397 and circulating TSH levels; each additional copy of the minor A allele was associated with an increase of 0.13 μIU/ml in TSH. The single-nucleotide polymorphism (SNP) is located in intron 1 of PDE8B, encoding a high-affinity cAMP-specific phosphodiesterase. The association was replicated in 4,158 individuals, including additional Sardinians and two genetically distant cohorts from Tuscany and the Old Order Amish (overall p value = 1.9 × 10−20). In addition to association of TSH levels with SNPs in PDE8B, our genome scan provided evidence for association with PDE10A and several biologically interesting candidates in a focused analysis of 24 genes. In particular, we found evidence for association of TSH levels with SNPs in the THRB (rs1505287, p = 7.3 × 10−5), GNAQ (rs10512065, p = 2.0 × 10−4), TG (rs2252696, p = 2.2 × 10−3), POU1F1 (rs1976324, p = 3.9 × 10−3), PDE4D (rs27178, p = 8.3 × 10−3), and TSHR (rs4903957, p = 8.6 × 10−3) loci. Overall, the results suggest a primary effect of PDE8B variants on cAMP levels in the thyroid. This would affect production of T4 and T3 and feedback to alter TSH release by the pituitary. PDE8B may thus provide a candidate target for the treatment of thyroid dysfunction

    Clustering of Genetic Correlations

    No full text
    <p>The 98 quantative traits are classified into clusters inferred from genetic correlations between any two traits, with an “average” distance measure used in the clustering algorithm. Classes of traits are color-coded as personality (red), serum composition (blue), cardiovascular (black), and anthropometric (green). Overlap of the apparent genetic contribution to variance is indicated on the ordinate, with larger overlaps towards the bottom. Eighteen values exceed 50% overlap (see text).</p

    Common variants in the GDF5-UQCC region are associated with variation in human height

    Get PDF
    Identifying genetic variants that influence human height will advance our understanding of skeletal growth and development. Several rare genetic variants have been convincingly and reproducibly associated with height in mendelian syndromes, and common variants in the transcription factor gene HMGA2 are associated with variation in height in the general population. Here we report genome-wide association analyses, using genotyped and imputed markers, of 6,669 individuals from Finland and Sardinia, and follow-up analyses in an additional 28,801 individuals. We show that common variants in the osteoarthritis-associated locus GDF5-UQCC contribute to variation in height with an estimated additive effect of 0.44 cm (overall P < 10(-15)). Our results indicate that there may be a link between the genetic basis of height and osteoarthritis, potentially mediated through alterations in bone growth and development

    Newly identified loci that influence lipid concentrations and risk of coronary artery disease.

    Get PDF
    To identify genetic variants influencing plasma lipid concentrations, we first used genotype imputation and meta-analysis to combine three genome-wide scans totaling 8,816 individuals and comprising 6,068 individuals specific to our study (1,874 individuals from the FUSION study of type 2 diabetes and 4,184 individuals from the SardiNIA study of aging-associated variables) and 2,758 individuals from the Diabetes Genetics Initiative, reported in a companion study in this issue. We subsequently examined promising signals in 11,569 additional individuals. Overall, we identify strongly associated variants in eleven loci previously implicated in lipid metabolism (ABCA1, the APOA5-APOA4-APOC3-APOA1 and APOE-APOC clusters, APOB, CETP, GCKR, LDLR, LPL, LIPC, LIPG and PCSK9) and also in several newly identified loci (near MVK-MMAB and GALNT2, with variants primarily associated with high-density lipoprotein (HDL) cholesterol; near SORT1, with variants primarily associated with low-density lipoprotein (LDL) cholesterol; near TRIB1, MLXIPL and ANGPTL3, with variants primarily associated with triglycerides; and a locus encompassing several genes near NCAN, with variants strongly associated with both triglycerides and LDL cholesterol). Notably, the 11 independent variants associated with increased LDL cholesterol concentrations in our study also showed increased frequency in a sample of coronary artery disease cases versus controls
    corecore