8 research outputs found

    Analysis of the Variability in Different Criteria to Define the Success of Bariatric Surgery: Retrospective Study 5-Year Follow-Up after Sleeve Gastrectomy and Roux-en-Y Gastric Bypass

    Get PDF
    Bariatric surgery; Sleeve gastrectomy; Success criteriaCirurgia bariàtrica; Gastrectomia de màniga; Criteris d'èxitCirugía bariátrica; Gastrectomía de manga; Criterios de éxito(1) Background: The current criteria for defining good or bad responders to bariatric surgery based on the percentage of weight loss do not properly reflect the therapeutic impact of the main bariatric techniques. At present there is an urgent need to fill this gap and provide scientific evidence that better define the success or failure of bariatric surgery in the long term. (2) Methods: This is a retrospective database study of a prospective cohort with 5-year follow-up. We established the success or failure of bariatric surgery in terms of weight loss according to a selected criterion: (1) Halverson and Koehler; (2) Reinhold modified by Christou; (3) Biron; (4) TWL > 20%; (5) percentage of changeable weight (AWL > 35%). We analyzed sensitivity and specificity for successful weight loss. (3) Results: 223 (38.7%) patients underwent sleeve gastrectomy (LSG) and 353 (61.2%) underwent laparoscopic Roux-en-Y gastric bypass (LRYGBP). The success rates at 5 years are: EWL > 50% 464 (80%), Reinhold 436 (75.6%), Biron 530 (92%), TWL > 20% 493 (85.5%), AWL 35 were the most adequate criteria as their specificities and sensibility were far above >80%. (4) Conclusions: The present study shows how the different definitions of success or failure are inconsistent in relation to the outcomes of BS. However, there are some criteria that associate statistically significant differences for the resolution of comorbidities and show the highest sensitivity and specificity rates

    Effectiveness of Fosfomycin for the Treatment of Multidrug-Resistant Escherichia coli Bacteremic Urinary Tract Infections

    Get PDF
    IMPORTANCE The consumption of broad-spectrum drugs has increased as a consequence of the spread of multidrug-resistant (MDR) Escherichia coli. Finding alternatives for these infections is critical, for which some neglected drugs may be an option. OBJECTIVE To determine whether fosfomycin is noninferior to ceftriaxone or meropenem in the targeted treatment of bacteremic urinary tract infections (bUTIs) due to MDR E coli. DESIGN, SETTING, AND PARTICIPANTS This multicenter, randomized, pragmatic, open clinical trial was conducted at 22 Spanish hospitals from June 2014 to December 2018. Eligible participants were adult patients with bacteremic urinary tract infections due to MDR E coli; 161 of 1578 screened patients were randomized and followed up for 60 days. Data were analyzed in May 2021. INTERVENTIONS Patients were randomized 1 to 1 to receive intravenous fosfomycin disodium at 4 g every 6 hours (70 participants) or a comparator (ceftriaxone or meropenem if resistant; 73 participants) with the option to switch to oral fosfomycin trometamol for the fosfomycin group or an active oral drug or pa renteral ertapenem for the comparator group after 4 days. MAIN OUTCOMES AND MEASURES The primary outcome was clinical and microbiological cure (CMC) 5 to 7 days after finalization of treatment; a noninferiority margin of 7% was considered. RESULTS Among 143 patients in the modified intention-to-treat population (median [IQR] age, 72 [62-81] years; 73 [51.0%] women), 48 of 70 patients (68.6%) treated with fosfomycin and 57 of 73 patients (78.1%) treated with comparators reached CMC (risk difference, -9.4 percentage points; 1-sided 95% CI, -21.5 to infinity percentage points; P = .10). While clinical or microbiological failure occurred among 10 patients (14.3%) treated with fosfomycin and 14 patients (19.7%) treated with comparators (risk difference, -5.4 percentage points; 1-sided 95% CI. -infinity to 4.9; percentage points; P = .19), an increased rate of adverse event-related discontinuations occurred with fosfomycin vs comparators (6 discontinuations [8.5%] vs 0 discontinuations; P = .006). In an exploratory analysis among a subset of 38 patients who underwent rectal colonization studies, patients treated with fosfomycin acquired a new ceftriaxone-resistant or meropenem-resistant gram-negative bacteria at a decreased rate compared with patients treated with comparators (0 of 21 patients vs 4 of 17 patients [23.5%]; 1-sided P = .01). CONCLUSIONS AND RELEVANCE This study found that fosfomycin did not demonstrate noninferiority to comparators as targeted treatment of bUTI from MDR E coli; this was due to an increased rate of adverse event-related discontinuations. This finding suggests that fosfomycin may be considered for selected patients with these infections

    CARB-ES-19 Multicenter Study of Carbapenemase-Producing Klebsiella pneumoniae and Escherichia coli From All Spanish Provinces Reveals Interregional Spread of High-Risk Clones Such as ST307/OXA-48 and ST512/KPC-3

    Get PDF
    ObjectivesCARB-ES-19 is a comprehensive, multicenter, nationwide study integrating whole-genome sequencing (WGS) in the surveillance of carbapenemase-producing K. pneumoniae (CP-Kpn) and E. coli (CP-Eco) to determine their incidence, geographical distribution, phylogeny, and resistance mechanisms in Spain.MethodsIn total, 71 hospitals, representing all 50 Spanish provinces, collected the first 10 isolates per hospital (February to May 2019); CPE isolates were first identified according to EUCAST (meropenem MIC > 0.12 mg/L with immunochromatography, colorimetric tests, carbapenem inactivation, or carbapenem hydrolysis with MALDI-TOF). Prevalence and incidence were calculated according to population denominators. Antibiotic susceptibility testing was performed using the microdilution method (EUCAST). All 403 isolates collected were sequenced for high-resolution single-nucleotide polymorphism (SNP) typing, core genome multilocus sequence typing (cgMLST), and resistome analysis.ResultsIn total, 377 (93.5%) CP-Kpn and 26 (6.5%) CP-Eco isolates were collected from 62 (87.3%) hospitals in 46 (92%) provinces. CP-Kpn was more prevalent in the blood (5.8%, 50/853) than in the urine (1.4%, 201/14,464). The cumulative incidence for both CP-Kpn and CP-Eco was 0.05 per 100 admitted patients. The main carbapenemase genes identified in CP-Kpn were blaOXA–48 (263/377), blaKPC–3 (62/377), blaVIM–1 (28/377), and blaNDM–1 (12/377). All isolates were susceptible to at least two antibiotics. Interregional dissemination of eight high-risk CP-Kpn clones was detected, mainly ST307/OXA-48 (16.4%), ST11/OXA-48 (16.4%), and ST512-ST258/KPC (13.8%). ST512/KPC and ST15/OXA-48 were the most frequent bacteremia-causative clones. The average number of acquired resistance genes was higher in CP-Kpn (7.9) than in CP-Eco (5.5).ConclusionThis study serves as a first step toward WGS integration in the surveillance of carbapenemase-producing Enterobacterales in Spain. We detected important epidemiological changes, including increased CP-Kpn and CP-Eco prevalence and incidence compared to previous studies, wide interregional dissemination, and increased dissemination of high-risk clones, such as ST307/OXA-48 and ST512/KPC-3

    Prevalence and Genetic Characteristics of Staphylococcus aureus CC398 Isolates From Invasive Infections in Spanish Hospitals, Focusing on the Livestock-Independent CC398-MSSA Clade

    No full text
    Livestock-associated (LA)-CC398-MRSA is closely related to pigs, being unfrequently detected in human invasive infections. CC398-MSSA is emerging in human invasive infections in some countries, but genetic and epidemiological characteristics are still scarcely reported. To determine the prevalence of Staphylococcus aureus (SA) CC398, both MRSA and MSSA, among blood cultures SA isolates recovered in Spanish hospitals located in regions with different pig-farming densities (PD) and characterize the recovered isolates. One thousand twenty-two SA isolates (761 MSSA, 261 MRSA) recovered from blood cultures during 6-12 months in 17 Spanish hospitals (2018-2019) were studied. CC398 lineage identification, detection of spa-types, and antibiotic resistance, virulence and human immune evasion cluster (IEC) genes were analyzed by PCR/sequencing. Forty-four CC398-MSSA isolates (4.3% of SA; 5.8% of MSSA) and 10 CC398-MRSA isolates (1% of SA; 3.8% of MRSA) were detected. Eleven spa-types were found among the CC398-MSSA isolates with t571 and t1451 the most frequent spa-types detected (75%). Most of CC398-MSSA isolates were Immune-Evasion-Cluster (IEC)-positive (88.6%), tetracycline-susceptible (95.5%) and erythromycin/clindamycin-inducible-resistant/erm(T)-positive (75%). No statistical significance was detected when the CC398-MSSA/MSSA rate was correlated to PD (pigs/km2) (p = 0.108). On the contrary, CC398-MRSA isolates were all IEC-negative, predominately spa-t011 (70%), and the CC398-MRSA/MRSA rate was significantly associated to PD (p CC398-MSSA is an emerging clade in invasive infections in Spanish hospitals. CC398-MRSA (mostly t011) and CC398-MSSA (mostly t571 and t1451) show important differences, possibly suggesting divergent steps in host-adaptation evolutionary processes. While CC398-MRSA is livestock-associated (lacking IEC-system), CC398-MSSA seems to be mostly livestock-independent, carrying human-adaptation markers

    Citrus exocortis viroid causes ribosomal stress in tomato plants

    No full text
    [EN] Viroids are naked RNAs that do not code for any known protein and yet are able to infect plants causing severe diseases. Because of their RNA nature, many studies have focused on the involvement of viroids in RNA-mediated gene silencing as being their pathogenesis mechanism. Here, the alterations caused by the Citrus exocortis viroid (CEVd) on the tomato translation machinery were studied as a new aspect of viroid pathogenesis. The presence of viroids in the ribosomal fractions of infected tomato plants was detected. More precisely, CEVd and its derived viroid small RNAs were found to co-sediment with tomato ribosomes in vivo, and to provoke changes in the global polysome profiles, particularly in the 40S ribosomal subunit accumulation. Additionally, the viroid caused alterations in ribosome biogenesis in the infected tomato plants, affecting the 18S rRNA maturation process. A higher expression level of the ribosomal stress mediator NAC082 was also detected in the CEVd-infected tomato leaves. Both the alterations in the rRNA processing and the induction of NAC082 correlate with the degree of viroid symptomatology. Taken together, these results suggest that CEVd is responsible for defective ribosome biogenesis in tomato, thereby interfering with the translation machinery and, therefore, causing ribosomal stress.Spanish Ministry of Science, Innovation and Universities [BIO2009-11818, BIO2015-70483-R to A.F.]; Spanish Ministry of Science, Innovation and Universities [BFU2009-11958]; Generalitat Valenciana (Valencia, Spain) [AICO/2017/048]; Natural Sciences and Engineering Research Council of Canada [155219-17 to J.-P.P.]; The RNA group is supported by a grant from the Universite de Sherbrooke; J.-P.P. holds the Research Chair of the Universite de Sherbrooke in RNA Structure and Genomics, and is a member of the Centre de Recherche du CHUS; B.B.-P. was a recipient of a VALi+d postdoctoral contract of the Generalitat Valenciana [APOSTD/2017/039]; Schleiff group is funded through the Deutsche Forschungsgemeinschaft [SFB 902]. Funding for open access charge: Spanish Ministry of Science, Innovation and Universities.Cottilli, P.; Belda-Palazón, B.; Adkar-Purushothama, CR.; Perreault, J.; Schleiff, E.; Rodrigo Bravo, I.; Ferrando Monleón, AR.... (2019). Citrus exocortis viroid causes ribosomal stress in tomato plants. Nucleic Acids Research. 47(16):8649-8661. https://doi.org/10.1093/nar/gkz679864986614716Di Serio, F., & Flores, R. (2008). Viroids: Molecular implements for dissecting RNA trafficking in plants. RNA Biology, 5(3), 128-131. doi:10.4161/rna.5.3.6638Flores, R., Owens, R. A., & Taylor, J. (2016). Pathogenesis by subviral agents: viroids and hepatitis delta virus. Current Opinion in Virology, 17, 87-94. doi:10.1016/j.coviro.2016.01.022Di Serio, F., Flores, R., Verhoeven, J. T. J., Li, S.-F., Pallás, V., Randles, J. W., … Owens, R. A. (2014). Current status of viroid taxonomy. Archives of Virology, 159(12), 3467-3478. doi:10.1007/s00705-014-2200-6Vogt, U., Pélissier, T., Pütz, A., Razvi, F., Fischer, R., & Wassenegger, M. (2004). Viroid-induced RNA silencing of GFP-viroid fusion transgenes does not induce extensive spreading of methylation or transitive silencing. The Plant Journal, 38(1), 107-118. doi:10.1111/j.1365-313x.2004.02029.xMartínez de Alba, A. E., Flores, R., & Hernández, C. (2002). Two Chloroplastic Viroids Induce the Accumulation of Small RNAs Associated with Posttranscriptional Gene Silencing. Journal of Virology, 76(24), 13094-13096. doi:10.1128/jvi.76.24.13094-13096.2002Markarian, N., Li, H. W., Ding, S. W., & Semancik, J. S. (2004). RNA silencing as related to viroid induced symptom expression. Archives of Virology, 149(2), 397-406. doi:10.1007/s00705-003-0215-5Carbonell, A., Martínez de Alba, Á.-E., Flores, R., & Gago, S. (2008). Double-stranded RNA interferes in a sequence-specific manner with the infection of representative members of the two viroid families. Virology, 371(1), 44-53. doi:10.1016/j.virol.2007.09.031St-Pierre, P., Hassen, I. F., Thompson, D., & Perreault, J. P. (2009). Characterization of the siRNAs associated with peach latent mosaic viroid infection. Virology, 383(2), 178-182. doi:10.1016/j.virol.2008.11.008MARTINEZ, G., DONAIRE, L., LLAVE, C., PALLAS, V., & GOMEZ, G. (2010). High-throughput sequencing ofHop stunt viroid-derived small RNAs from cucumber leaves and phloem. Molecular Plant Pathology, 11(3), 347-359. doi:10.1111/j.1364-3703.2009.00608.xIvanova, D., Milev, I., Vachev, T., Baev, V., Yahubyan, G., Minkov, G., & Gozmanova, M. (2014). Small RNA analysis of Potato Spindle Tuber Viroid infected Phelipanche ramosa. Plant Physiology and Biochemistry, 74, 276-282. doi:10.1016/j.plaphy.2013.11.019Islam, W., Noman, A., Qasim, M., & Wang, L. (2018). Plant Responses to Pathogen Attack: Small RNAs in Focus. International Journal of Molecular Sciences, 19(2), 515. doi:10.3390/ijms19020515Minoia, S., Carbonell, A., Di Serio, F., Gisel, A., Carrington, J. C., Navarro, B., & Flores, R. (2014). Specific Argonautes Selectively Bind Small RNAs Derived from Potato Spindle Tuber Viroid and Attenuate Viroid Accumulation In Vivo. Journal of Virology, 88(20), 11933-11945. doi:10.1128/jvi.01404-14Katsarou, K., Mavrothalassiti, E., Dermauw, W., Van Leeuwen, T., & Kalantidis, K. (2016). Combined Activity of DCL2 and DCL3 Is Crucial in the Defense against Potato Spindle Tuber Viroid. PLOS Pathogens, 12(10), e1005936. doi:10.1371/journal.ppat.1005936Dadami, E., Boutla, A., Vrettos, N., Tzortzakaki, S., Karakasilioti, I., & Kalantidis, K. (2013). DICER-LIKE 4 But Not DICER-LIKE 2 May Have a Positive Effect on Potato Spindle Tuber Viroid Accumulation in Nicotiana benthamiana. Molecular Plant, 6(1), 232-234. doi:10.1093/mp/sss118Navarro, B., Gisel, A., Rodio, M. E., Delgado, S., Flores, R., & Di Serio, F. (2012). Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. The Plant Journal, 70(6), 991-1003. doi:10.1111/j.1365-313x.2012.04940.xEamens, A. L., Smith, N. A., Dennis, E. S., Wassenegger, M., & Wang, M.-B. (2014). In Nicotiana species, an artificial microRNA corresponding to the virulence modulating region of Potato spindle tuber viroid directs RNA silencing of a soluble inorganic pyrophosphatase gene and the development of abnormal phenotypes. Virology, 450-451, 266-277. doi:10.1016/j.virol.2013.12.019Adkar-Purushothama, C. R., Brosseau, C., Giguère, T., Sano, T., Moffett, P., & Perreault, J.-P. (2015). Small RNA Derived from the Virulence Modulating Region of the Potato spindle tuber viroid Silences callose synthase Genes of Tomato Plants. The Plant Cell, 27(8), 2178-2194. doi:10.1105/tpc.15.00523Adkar-Purushothama, C. R., Iyer, P. S., & Perreault, J.-P. (2017). Potato spindle tuber viroid infection triggers degradation of chloride channel protein CLC-b-like and Ribosomal protein S3a-like mRNAs in tomato plants. Scientific Reports, 7(1). doi:10.1038/s41598-017-08823-zCarbonell, A., & Daròs, J.-A. (2017). Artificial microRNAs and synthetictrans-acting small interfering RNAs interfere with viroid infection. Molecular Plant Pathology, 18(5), 746-753. doi:10.1111/mpp.12529Lisón, P., Tárraga, S., López-Gresa, P., Saurí, A., Torres, C., Campos, L., … Rodrigo, I. (2013). A noncoding plant pathogen provokes both transcriptional and posttranscriptional alterations in tomato. PROTEOMICS, 13(5), 833-844. doi:10.1002/pmic.201200286Dubé, A., Bisaillon, M., & Perreault, J.-P. (2009). Identification of Proteins from Prunus persica That Interact with Peach Latent Mosaic Viroid. Journal of Virology, 83(23), 12057-12067. doi:10.1128/jvi.01151-09Eiras, M., Nohales, M. A., Kitajima, E. W., Flores, R., & Daròs, J. A. (2010). Ribosomal protein L5 and transcription factor IIIA from Arabidopsis thaliana bind in vitro specifically Potato spindle tuber viroid RNA. Archives of Virology, 156(3), 529-533. doi:10.1007/s00705-010-0867-xMartinez, G., Castellano, M., Tortosa, M., Pallas, V., & Gomez, G. (2013). A pathogenic non-coding RNA induces changes in dynamic DNA methylation of ribosomal RNA genes in host plants. Nucleic Acids Research, 42(3), 1553-1562. doi:10.1093/nar/gkt968Castellano, M., Martinez, G., Marques, M. C., Moreno-Romero, J., Köhler, C., Pallas, V., & Gomez, G. (2016). Changes in the DNA methylation pattern of the host male gametophyte of viroid-infected cucumber plants. Journal of Experimental Botany, 67(19), 5857-5868. doi:10.1093/jxb/erw353Mills, E. W., & Green, R. (2017). Ribosomopathies: There’s strength in numbers. Science, 358(6363), eaan2755. doi:10.1126/science.aan2755Mayer, C., & Grummt, I. (2005). Cellular Stress and Nucleolar Function. Cell Cycle, 4(8), 1036-1038. doi:10.4161/cc.4.8.1925Boulon, S., Westman, B. J., Hutten, S., Boisvert, F.-M., & Lamond, A. I. (2010). The Nucleolus under Stress. Molecular Cell, 40(2), 216-227. doi:10.1016/j.molcel.2010.09.024Ohbayashi, I., & Sugiyama, M. (2018). Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.02247Weis, B. L., Kovacevic, J., Missbach, S., & Schleiff, E. (2015). Plant-Specific Features of Ribosome Biogenesis. Trends in Plant Science, 20(11), 729-740. doi:10.1016/j.tplants.2015.07.003Waltz, F., Nguyen, T.-T., Arrivé, M., Bochler, A., Chicher, J., Hammann, P., … Giegé, P. (2019). Small is big in Arabidopsis mitochondrial ribosome. Nature Plants, 5(1), 106-117. doi:10.1038/s41477-018-0339-yOhbayashi, I., Lin, C.-Y., Shinohara, N., Matsumura, Y., Machida, Y., Horiguchi, G., … Sugiyama, M. (2017). Evidence for a Role of ANAC082 as a Ribosomal Stress Response Mediator Leading to Growth Defects and Developmental Alterations in Arabidopsis. The Plant Cell, 29(10), 2644-2660. doi:10.1105/tpc.17.00255Kressler, D., Hurt, E., & Baßler, J. (2017). A Puzzle of Life: Crafting Ribosomal Subunits. Trends in Biochemical Sciences, 42(8), 640-654. doi:10.1016/j.tibs.2017.05.005Rorbach, J., Aibara, S., & Amunts, A. (2017). Ribosome origami. Nature Structural & Molecular Biology, 24(11), 879-881. doi:10.1038/nsmb.3497Ahmed, T., Yin, Z., & Bhushan, S. (2016). Cryo-EM structure of the large subunit of the spinach chloroplast ribosome. Scientific Reports, 6(1). doi:10.1038/srep35793Henras, A. K., Soudet, J., Gérus, M., Lebaron, S., Caizergues-Ferrer, M., Mougin, A., & Henry, Y. (2008). The post-transcriptional steps of eukaryotic ribosome biogenesis. Cellular and Molecular Life Sciences, 65(15), 2334-2359. doi:10.1007/s00018-008-8027-0Baßler, J., & Hurt, E. (2019). Eukaryotic Ribosome Assembly. Annual Review of Biochemistry, 88(1), 281-306. doi:10.1146/annurev-biochem-013118-110817Hang, R., Wang, Z., Deng, X., Liu, C., Yan, B., Yang, C., … Cao, X. (2018). Ribosomal RNA Biogenesis and Its Response to Chilling Stress in Oryza sativa. Plant Physiology, 177(1), 381-397. doi:10.1104/pp.17.01714Palm, D., Streit, D., Shanmugam, T., Weis, B. L., Ruprecht, M., Simm, S., & Schleiff, E. (2018). Plant-specific ribosome biogenesis factors in Arabidopsis thaliana with essential function in rRNA processing. Nucleic Acids Research, 47(4), 1880-1895. doi:10.1093/nar/gky1261Tomecki, R., Sikorski, P. J., & Zakrzewska-Placzek, M. (2017). Comparison of preribosomal RNA processing pathways in yeast, plant and human cells - focus on coordinated action of endo- and exoribonucleases. FEBS Letters, 591(13), 1801-1850. doi:10.1002/1873-3468.12682Perry, K. L., & Palukaitis, P. (1990). Transcription of tomato ribosomal DNA and the organization of the intergenic spacer. Molecular and General Genetics MGG, 221(1), 102-112. doi:10.1007/bf00280374Echevarría-Zomeño, S., Yángüez, E., Fernández-Bautista, N., Castro-Sanz, A., Ferrando, A., & Castellano, M. (2013). Regulation of Translation Initiation under Biotic and Abiotic Stresses. International Journal of Molecular Sciences, 14(3), 4670-4683. doi:10.3390/ijms14034670Wang, Z., Ying, T., Bao, B., & Huang, X. (2005). Characteristics of fruit ripening in tomato mutantepi. Journal of Zhejiang University SCIENCE, 6B(6), 502-507. doi:10.1631/jzus.2005.b0502Bellés, J. M., Carbonell, J., & Conejero, V. (1991). Polyamines in Plants Infected by Citrus Exocortis Viroid or Treated with Silver Ions and Ethephon. Plant Physiology, 96(4), 1053-1059. doi:10.1104/pp.96.4.1053Adkar-Purushothama, C. R., & Perreault, J.-P. (2018). Alterations of the viroid regions that interact with the host defense genes attenuate viroid infection in host plant. RNA Biology, 15(7), 955-966. doi:10.1080/15476286.2018.1462653Rivera, M. C., Maguire, B., & Lake, J. A. (2015). Isolation of Ribosomes and Polysomes. Cold Spring Harbor Protocols, 2015(3), pdb.prot081331. doi:10.1101/pdb.prot081331Hsu, P. Y., Calviello, L., Wu, H.-Y. L., Li, F.-W., Rothfels, C. J., Ohler, U., & Benfey, P. N. (2016). Super-resolution ribosome profiling reveals unannotated translation events in Arabidopsis. Proceedings of the National Academy of Sciences, 113(45), E7126-E7135. doi:10.1073/pnas.1614788113Mustroph, A., Juntawong, P., & Bailey-Serres, J. (2009). Isolation of Plant Polysomal mRNA by Differential Centrifugation and Ribosome Immunopurification Methods. Methods in Molecular Biology™, 109-126. doi:10.1007/978-1-60327-563-7_6López-Gresa, M. P., Lisón, P., Yenush, L., Conejero, V., Rodrigo, I., & Bellés, J. M. (2016). Salicylic Acid Is Involved in the Basal Resistance of Tomato Plants to Citrus Exocortis Viroid and Tomato Spotted Wilt Virus. PLOS ONE, 11(11), e0166938. doi:10.1371/journal.pone.0166938Missbach, S., Weis, B. L., Martin, R., Simm, S., Bohnsack, M. T., & Schleiff, E. (2013). 40S Ribosome Biogenesis Co-Factors Are Essential for Gametophyte and Embryo Development. PLoS ONE, 8(1), e54084. doi:10.1371/journal.pone.0054084Verhoeven, J. th. j., Jansen, C. C. C., Willemen, T. M., Kox, L. F. F., Owens, R. A., & Roenhorst, J. W. (2004). Natural infections of tomato by Citrus exocortis viroid, Columnea latent viroid, Potato spindle tuber viroid and Tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 110(8), 823-831. doi:10.1007/s10658-004-2493-5Campos, L., Granell, P., Tárraga, S., López-Gresa, P., Conejero, V., Bellés, J. M., … Lisón, P. (2014). Salicylic acid and gentisic acid induce RNA silencing-related genes and plant resistance to RNA pathogens. Plant Physiology and Biochemistry, 77, 35-43. doi:10.1016/j.plaphy.2014.01.016Kalantidis, K., Denti, M. A., Tzortzakaki, S., Marinou, E., Tabler, M., & Tsagris, M. (2007). Virp1 Is a Host Protein with a Major Role in Potato Spindle Tuber Viroid Infection in Nicotiana Plants. Journal of Virology, 81(23), 12872-12880. doi:10.1128/jvi.00974-07Barry, C. S., Fox, E. A., Yen, H., Lee, S., Ying, T., Grierson, D., & Giovannoni, J. J. (2001). Analysis of the Ethylene Response in theepinastic Mutant of Tomato. Plant Physiology, 127(1), 58-66. doi:10.1104/pp.127.1.58Diener, T. O. (2003). Discovering viroids — a personal perspective. Nature Reviews Microbiology, 1(1), 75-80. doi:10.1038/nrmicro736Ding, B., & Itaya, A. (2007). Viroid: A Useful Model for Studying the Basic Principles of Infection and RNA Biology. Molecular Plant-Microbe Interactions®, 20(1), 7-20. doi:10.1094/mpmi-20-0007Jakab, G., Kiss, T., & Solymosy, F. (1986). Viroid pathogenicity and pre-rRNA processing: A model amenable to experimental testing. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 868(4), 190-197. doi:10.1016/0167-4781(86)90054-0Meduski, C. J., & Velten, J. (1990). PSTV sequence similarity to large rRNA. Plant Molecular Biology, 14(4), 625-627. doi:10.1007/bf00027509Kiss, T., Pósfai, J., & Solymosy, F. (1983). Sequence homology between potato spindle tuber viroid and U3B snRNA. FEBS Letters, 163(2), 217-220. doi:10.1016/0014-5793(83)80822-9Hughes, J. M., & Ares, M. (1991). Depletion of U3 small nucleolar RNA inhibits cleavage in the 5′ external transcribed spacer of yeast pre-ribosomal RNA and impairs formation of 18S ribosomal RNA. The EMBO Journal, 10(13), 4231-4239. doi:10.1002/j.1460-2075.1991.tb05001.xSharma, K., & Tollervey, D. (1999). Base Pairing between U3 Small Nucleolar RNA and the 5′ End of 18S rRNA Is Required for Pre-rRNA Processing. Molecular and Cellular Biology, 19(9), 6012-6019. doi:10.1128/mcb.19.9.6012Dragon, F., Gallagher, J. E. G., Compagnone-Post, P. A., Mitchell, B. M., Porwancher, K. A., Wehner, K. A., … Baserga, S. J. (2002). A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature, 417(6892), 967-970. doi:10.1038/nature00769Dutca, L. M., Gallagher, J. E. G., & Baserga, S. J. (2011). The initial U3 snoRNA:pre-rRNA base pairing interaction required for pre-18S rRNA folding revealed by in vivo chemical probing. Nucleic Acids Research, 39(12), 5164-5180. doi:10.1093/nar/gkr044Qi, Y., & Ding, B. (2003). Differential Subnuclear Localization of RNA Strands of Opposite Polarity Derived from an Autonomously Replicating Viroid[W]. The Plant Cell, 15(11), 2566-2577. doi:10.1105/tpc.016576Idol, R. A., Robledo, S., Du, H.-Y., Crimmins, D. L., Wilson, D. B., Ladenson, J. H., … Mason, P. J. (2007). Cells depleted for RPS19, a protein associated with Diamond Blackfan Anemia, show defects in 18S ribosomal RNA synthesis and small ribosomal subunit production. Blood Cells, Molecules, and Diseases, 39(1), 35-43. doi:10.1016/j.bcmd.2007.02.001Cho, H. K., Ahn, C. S., Lee, H.-S., Kim, J.-K., & Pai, H.-S. (2013). Pescadillo plays an essential role in plant cell growth and survival by modulating ribosome biogenesis. The Plant Journal, 76(3), 393-405. doi:10.1111/tpj.12302Weis, B. L., Missbach, S., Marzi, J., Bohnsack, M. T., & Schleiff, E. (2014). The 60S associated ribosome biogenesis factor LSG1-2 is required for 40S maturation inArabidopsis thaliana. The Plant Journal, 80(6), 1043-1056. doi:10.1111/tpj.12703Kojima, K., Tamura, J., Chiba, H., Fukada, K., Tsukaya, H., & Horiguchi, G. (2018). Two Nucleolar Proteins, GDP1 and OLI2, Function As Ribosome Biogenesis Factors and Are Preferentially Involved in Promotion of Leaf Cell Proliferation without Strongly Affecting Leaf Adaxial–Abaxial Patterning in Arabidopsis thaliana. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.02240Maekawa, S., Ishida, T., & Yanagisawa, S. (2017). Reduced Expression of APUM24, Encoding a Novel rRNA Processing Factor, Induces Sugar-Dependent Nucleolar Stress and Altered Sugar Responses in Arabidopsis thaliana. The Plant Cell, 30(1), 209-227. doi:10.1105/tpc.17.00778Bonfiglioli, R. G., McFadden, G. I., & Symons, R. H. (1994). In situ hybridization localizes avocado sunblotch viroid on chloroplast thylakoid membranes and coconut cadang cadang viroid in the nucleus. The Plant Journal, 6(1), 99-103. doi:10.1046/j.1365-313x.1994.6010099.xHill, J. M., Zhao, Y., Bhattacharjee, S., & Lukiw, W. J. (2014). miRNAs and viroids utilize common strategies in genetic signal transfer. Frontiers in Molecular Neuroscience, 7. doi:10.3389/fnmol.2014.00010Li, S., Liu, L., Zhuang, X., Yu, Y., Liu, X., Cui, X., … Chen, X. (2013). MicroRNAs Inhibit the Translation of Target mRNAs on the Endoplasmic Reticulum in Arabidopsis. Cell, 153(3), 562-574. doi:10.1016/j.cell.2013.04.005Fukaya, T., Iwakawa, H., & Tomari, Y. (2014). MicroRNAs Block Assembly of eIF4F Translation Initiation Complex in Drosophila. Molecular Cell, 56(1), 67-78. doi:10.1016/j.molcel.2014.09.004Lanet, E., Delannoy, E., Sormani, R., Floris, M., Brodersen, P., Crété, P., … Robaglia, C. (2009). Biochemical Evidence for Translational Repression by Arabidopsis MicroRNAs. The Plant Cell, 21(6), 1762-1768. doi:10.1105/tpc.108.063412Iwakawa, H., & Tomari, Y. (2013). Molecular Insights into microRNA-Mediated Translational Repression in Plants. Molecular Cell, 52(4), 591-601. doi:10.1016/j.molcel.2013.10.033Reis, R. S., Hart-Smith, G., Eamens, A. L., Wilkins, M. R., & Waterhouse, P. M. (2015). Gene regulation by translational inhibition is determined by Dicer partnering proteins. Nature Plants, 1(3). doi:10.1038/nplants.2014.27Flores, R., Navarro, B., Kovalskaya, N., Hammond, R. W., & Di Serio, F. (2017). Engineering resistance against viroids. Current Opinion in Virology, 26, 1-7. doi:10.1016/j.coviro.2017.07.00

    Pseudomonas aeruginosa antibiotic susceptibility profiles, genomic epidemiology and resistance mechanisms: a nation-wide five-year time lapse analysisResearch in context

    No full text
    Summary: Background: Pseudomonas aeruginosa healthcare-associated infections are one of the top antimicrobial resistance threats world-wide. In order to analyze the current trends, we performed a Spanish nation-wide high-resolution analysis of the susceptibility profiles, the genomic epidemiology and the resistome of P. aeruginosa over a five-year time lapse. Methods: A total of 3.180 nonduplicated P. aeruginosa clinical isolates from two Spanish nation-wide surveys performed in October 2017 and 2022 were analyzed. MICs of 13 antipseudomonals were determined by ISO-EUCAST. Multidrug resistance (MDR)/extensively drug resistance (XDR)/difficult to treat resistance (DTR)/pandrug resistance (PDR) profiles were defined following established criteria. All XDR/DTR isolates were subjected to whole genome sequencing (WGS). Findings: A decrease in resistance to all tested antibiotics, including older and newer antimicrobials, was observed in 2022 vs 2017. Likewise, a major reduction of XDR (15.2% vs 5.9%) and DTR (4.2 vs 2.1%) profiles was evidenced, and even more patent among ICU isolates [XDR (26.0% vs 6.0%) and DTR (8.9% vs 2.6%)] (p < 0.001). The prevalence of Extended-spectrum β-lactamase/carbapenemase production was slightly lower in 2022 (2.1%. vs 3.1%, p = 0.064). However, there was a significant increase in the proportion of carbapenemase production among carbapenem-resistant strains (29.4% vs 18.1%, p = 0.0246). While ST175 was still the most frequent clone among XDR, a slight reduction in its prevalence was noted (35.9% vs 45.5%, p = 0.106) as opposed to ST235 which increased significantly (24.3% vs 12.3%, p = 0.0062). Interpretation: While the generalized decrease in P. aeruginosa resistance, linked to a major reduction in the prevalence of XDR strains, is encouraging, the negative counterpart is the increase in the proportion of XDR strains producing carbapenemases, associated to the significant advance of the concerning world-wide disseminated hypervirulent high-risk clone ST235. Continued high-resolution surveillance, integrating phenotypic and genomic data, is necessary for understanding resistance trends and analyzing the impact of national plans on antimicrobial resistance. Funding: MSD and the Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación and Unión Europea—NextGenerationEU
    corecore