15 research outputs found

    Improving Sentiment Analysis in Arabic Using Word Representation

    Get PDF
    The complexities of Arabic language in morphology, orthography and dialects makes sentiment analysis for Arabic more challenging. Also, text feature extraction from short messages like tweets, in order to gauge the sentiment, makes this task even more difficult. In recent years, deep neural networks were often employed and showed very good results in sentiment classification and natural language processing applications. Word embedding, or word distributing approach, is a current and powerful tool to capture together the closest words from a contextual text. In this paper, we describe how we construct Word2Vec models from a large Arabic corpus obtained from ten newspapers in different Arab countries. By applying different machine learning algorithms and convolutional neural networks with different text feature selections, we report improved accuracy of sentiment classification (91%-95%) on our publicly available Arabic language health sentiment dataset [1]Comment: Authors accepted version of submission for ASAR 201

    Arabic Language Sentiment Analysis on Health Services

    Get PDF
    The social media network phenomenon leads to a massive amount of valuable data that is available online and easy to access. Many users share images, videos, comments, reviews, news and opinions on different social networks sites, with Twitter being one of the most popular ones. Data collected from Twitter is highly unstructured, and extracting useful information from tweets is a challenging task. Twitter has a huge number of Arabic users who mostly post and write their tweets using the Arabic language. While there has been a lot of research on sentiment analysis in English, the amount of researches and datasets in Arabic language is limited. This paper introduces an Arabic language dataset which is about opinions on health services and has been collected from Twitter. The paper will first detail the process of collecting the data from Twitter and also the process of filtering, pre-processing and annotating the Arabic text in order to build a big sentiment analysis dataset in Arabic. Several Machine Learning algorithms (Naive Bayes, Support Vector Machine and Logistic Regression) alongside Deep and Convolutional Neural Networks were utilized in our experiments of sentiment analysis on our health dataset.Comment: Authors accepted version of submission for ASAR 201

    A Combined CNN and LSTM Model for Arabic Sentiment Analysis

    Get PDF
    Deep neural networks have shown good data modelling capabilities when dealing with challenging and large datasets from a wide range of application areas. Convolutional Neural Networks (CNNs) offer advantages in selecting good features and Long Short-Term Memory (LSTM) networks have proven good abilities of learning sequential data. Both approaches have been reported to provide improved results in areas such image processing, voice recognition, language translation and other Natural Language Processing (NLP) tasks. Sentiment classification for short text messages from Twitter is a challenging task, and the complexity increases for Arabic language sentiment classification tasks because Arabic is a rich language in morphology. In addition, the availability of accurate pre-processing tools for Arabic is another current limitation, along with limited research available in this area. In this paper, we investigate the benefits of integrating CNNs and LSTMs and report obtained improved accuracy for Arabic sentiment analysis on different datasets. Additionally, we seek to consider the morphological diversity of particular Arabic words by using different sentiment classification levels.Comment: Authors accepted version of submission for CD-MAKE 201

    Utilising Acknowledge for the Trust in Wireless Sensor Networks

    No full text
    Wireless Sensor Networks (WSNs) are emerging networks that are being utilized in a variety of applications, such as remote sensing images, military, healthcare, and traffic monitoring. Those critical applications require different levels of security; however, due to the limitation of the sensor networks, security is a challenge where traditional algorithms cannot be used. In addition, sensor networks are considered as the core of the Internet of Things (IoT) and smart cities, where security became one of the most significant problems with IoT and smart cities applications. Therefore, this paper proposes a novel and light trust algorithm to satisfy the security requirements of WSNs. It considers sensor nodes’ limitations and cross-layer information for efficient secure routing in WSNs. It proposes a Tow-ACKs Trust (TAT) Routing protocol for secure routing in WSNs. TAT computes the trust values based on direct and indirect observation of the nodes. TAT uses the first-hand and second-hand information from the Data Link and the Transmission Control Protocol layers to modify the trust’s value. The suggested TATs’ protocols performance is compared to BTRM and Peertrust models in terms of malicious detection ratio, accuracy, average path length, and average energy consumption. The proposed algorithm is compared to BTRM and Peertrust models, the most recent algorithms that proved their efficiency in WSNs. The simulation results indicate that TAT is scalable and provides excellent performance over both BTRM and Peertrust models, even when the number of malicious nodes is high

    Diagnosis of Histopathological Images to Distinguish Types of Malignant Lymphomas Using Hybrid Techniques Based on Fusion Features

    No full text
    Malignant lymphoma is one of the types of malignant tumors that can lead to death. The diagnostic method for identifying malignant lymphoma is a histopathological analysis of lymphoma tissue images. Because of the similar morphological characteristics of the lymphoma types, it is difficult for doctors and specialists to manually distinguish the types of lymphomas. Therefore, deep and automated learning techniques aim to solve this problem and help clinicians reconsider their diagnostic decisions. Because of the similarity of the morphological characteristics between lymphoma types, this study aimed to extract features using various algorithms and deep learning models and combine them together into feature vectors. Two datasets have been applied, each with two different systems for the reliable diagnosis of malignant lymphoma. The first system was a hybrid system between DenseNet-121 and ResNet-50 to extract deep features and reduce their dimensions by the principal component analysis (PCA) method, using the support vector machine (SVM) algorithm for classifying low-dimensional deep features. The second system was based on extracting the features using DenseNet-121 and ResNet-50 and combining them with the hand-crafted features extracted by gray level co-occurrence matrix (GLCM), fuzzy color histogram (FCH), discrete wavelet transform (DWT), and local binary pattern (LBP) algorithms and classifying them using a feed-forward neural network (FFNN) classifier. All systems achieved superior results in diagnosing the two datasets of malignant lymphomas. An FFNN classifier with features of ResNet-50 and hand-crafted features reached an accuracy of 99.5%, specificity of 100%, sensitivity of 99.33%, and AUC of 99.86% for the first dataset. In contrast, the same technique reached 100% for all measures to diagnose the second dataset

    Hybrid Techniques of Analyzing MRI Images for Early Diagnosis of Brain Tumours Based on Hybrid Features

    No full text
    Brain tumours are considered one of the deadliest tumours in humans and have a low survival rate due to their heterogeneous nature. Several types of benign and malignant brain tumours need to be diagnosed early to administer appropriate treatment. Magnetic resonance (MR) images provide details of the brain’s internal structure, which allow radiologists and doctors to diagnose brain tumours. However, MR images contain complex details that require highly qualified experts and a long time to analyse. Artificial intelligence techniques solve these challenges. This paper presents four proposed systems, each with more than one technology. These techniques vary between machine, deep and hybrid learning. The first system comprises artificial neural network (ANN) and feedforward neural network (FFNN) algorithms based on the hybrid features between local binary pattern (LBP), grey-level co-occurrence matrix (GLCM) and discrete wavelet transform (DWT) algorithms. The second system comprises pre-trained GoogLeNet and ResNet-50 models for dataset classification. The two models achieved superior results in distinguishing between the types of brain tumours. The third system is a hybrid technique between convolutional neural network and support vector machine. This system also achieved superior results in distinguishing brain tumours. The fourth proposed system is a hybrid of the features of GoogLeNet and ResNet-50 with the LBP, GLCM and DWT algorithms (handcrafted features) to obtain representative features and classify them using the ANN and FFNN. This method achieved superior results in distinguishing between brain tumours and performed better than the other methods. With the hybrid features of GoogLeNet and hand-crafted features, FFNN achieved an accuracy of 99.9%, a precision of 99.84%, a sensitivity of 99.95%, a specificity of 99.85% and an AUC of 99.9%
    corecore