10 research outputs found

    Jezikoslovna analiza spletnih besedil na primeru objav Jonasa Žnidaršiča

    Full text link
    V magistrskem delu so predstavljeni izhodiščni koncepti, ki so bili podlaga nadaljnjemu raziskovalnemu delu, in sicer osnovni pojmi pragmatike in stilistike, ključni pojme žanrske teorije ter pomembni vidiki za analizo slikovnih sestavin pri sporazumevanjupredstavljene so glavne značilnosti spletnih besedil, ki jih v prvi vrsti zaznamujejo hiperbesedilnost, večpredstavnost ter aktualnost. Opredeljeni so tudi osnovni pojmi povezani z blogom, značilnosti družbenega omrežja Twitter ter aplikacije Instagram. Drugi del zajema analizo spletnih objav Jonasa Žnidaršiča z vidika izhodiščnih konceptov. Avtor je besedila objavil na svojem blogu Futer in na Twitterju - podrobneje je analiziranih šest besedil, objavljenih na njegovem blogu, od tega štirje novejši in dva starejša bloga, ter njegovi tviti, objavljeni v obdobju enega leta (od aprila 2015 do marca 2016), ki se povezujejo tudi z njegovimi objavami na Instagramu. Metodološki pristop, ki je bil uporabljen pri analizi besedil, je bila kritična analiza diskurzaanalizirane pa so tako besedilne kot tudi nebesedilne prvine. Gre za presojevalno-polemični tip besedil, s katerimi avtor podaja svoje mnenje ali začenja diskusijo o aktualnih tematikah. Žnidaršič v obravnavanih besedilih s svojimi izbirami potrjuje svojo visoko razvito jezikovno kompetenčnost, njegov slog je humoren in sproščen, oba elementa pa tvorec vnaša s pomočjo jezikovnih izbir, in sicer predvsem z načrtnimi leksikalnimi ter skladenjskimi odkloni od norme.This Master\u27s thesis outlines some basic concepts, which were the basis for further research work, namely the core concepts of pragmatics and stylistics, key terms of theory of the genre and important aspects of the analysis of the pictorial components of communication. It further presents the main features of web texts, which are primarily characterised by hypertextuality, multimedia and topicality. Additionally, the basic concepts of blog and characteristics of social network Twitter and Instagram have been discussed. In the second part of the work the online posts of Jonas Žnidaršič have been analysed from the perspective of the basic concepts. The author has published his texts on his blog, Futer, and on Twitter. We have thoroughly analysed six of his texts published on his blog, four of which were newer and two older, and his tweets published over the period of one year (from April 2015 to March 2016), which link up with his Instagram publications too. The texts were analysed using critical discourse analysis methodology and both, textual and non-textual elements were analysed. The author presents his opinion or starts a discussion on current topics creating evaluative and polemical types of text. In the analysed texts Žnidaršič affirms his highly developed linguistic competencehis style of writing is humorous and relaxed and both of these elements are conveyed through language choice, mainly with premeditated lexical and syntactic deviations from norm

    Distribution of <i>Bscl2</i> mRNA in the mouse central nervous system.

    No full text
    <p>Qualitative assessment of <i>Bscl2</i> mRNA expression across the rostral-caudal extent of the adult mouse brain, as indicated by radioactive in situ hybridisation histochemistry. Levels of expression: +, very low; ++, low; +++, moderate; ++++, high; +++++, very high; SC (+), scattered cells of low expression; SC (++) scattered cells of high expression.</p

    Neuroanatomical characterisation of <i>Bscl2</i> mRNA in adult mouse brain.

    No full text
    <p>Radioactive in situ hybridisation histochemistry analysis of <i>Bscl2</i> mRNA distribution in coronal section across the rostral-caudal extent of adult mouse brain. Endogenous <i>Bscl2</i> expression was detected throughout the brain, for full characterisation see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0045790#pone-0045790-t001" target="_blank">Table 1</a>. (<b>A–O</b>) <sup>35</sup>S-labelled <i>Bscl2</i> expression was detected in the piriform cortex (Pir), olfactory tubercle (Tu), islands of Calleja (ICj), caudate putamen (CP) lateral septal nucleus intermediate part (LSI), medial septal nucleus (MS), nucleus of the vertical limb of the diagonal band (VDB), lateral septal nucleus ventral part (LSV), nucleus of the horizontal limb of the diagonal band (HDB), magnocellular preoptic nucleus (MCPO), ventromedial preoptic nucleus (VMPO), median preoptic nucleus (MnPO), medial preoptic nucleus medial part (MPOM), paraventricular thalamic nucleus (PVA), lateral globus pallidus (LGP), supraoptic nucleus (SO), suprachiasmatic nucleus (SCh), subfornical organ (SFO), paraventricular nucleus of the hypothalamus (PVN), zona incerta (ZI), dorsomedial nucleus of the hypothalamus (DMH), ventromedial nucleus of the hypothalamus (VMH), arcuate nucleus of the hypothalamus (ARC), basomedial amygdaloid nucleus (BMA), medial amygdaloid nucleus (MeA), medial habenular (MHb), pyramidal cell layer of the hippocampus (py), granular layer of the dentate gyrus (GrDG), posterior hypothalamus (PH), supramammilliary nucleus medial part (SuMM), premammillary nucleus ventral part (PMV), nucleus of Darkschewitsch (Dk), Edinger-Westphal nucleus (EW), ventral tegmental area (VTA), dorsal raphe nucleus (DRN), periaqueductal grey (PAG), median raphe nucleus (MnR), lateral parabrachial nucleus (LPBN), dorsal tegmental nucleus (DTg), laterodorsal tegmental nucleus (LDTg), locus coeruleus (LC), Barrington’s nucleus (Bar), medial vestibular nucleus (MVe), ambiguous nucleus (Amb), dorsal vagal complex (DVC), hypoglossal nucleus (12N). Scale bar in (A) represents 1 mm and applies to all other images.</p

    Expression of <i>Bscl2</i> mRNA in adult mouse brain.

    No full text
    <p>Autoradiographical visualisation of <i>Bscl2</i> mRNA in saggital section of the adult mouse brain using radioactive in situ hybridisation histochemistry. (<b>A</b>) Diagrammatic representation of the mouse <i>Bscl2</i> locus detailing the location of the ISHH riboprobe (not to scale). (<b>B</b>) Endogenous <i>Bscl2</i> expression as detected by a specific antisense riboprobe revealed strong expression within the basal forebrain (BF), hippocampus (Hippo), hypothalamus (Hypo), dorsal brainstem (dBS) and ventral brainstem (vBS). (<b>C</b>) Corresponding <i>Bscl2</i> sense riboprobe control.</p

    <i>Bscl2</i> mRNA distribution within the PVN and DVC.

    No full text
    <p>Radioactive in situ hybridisation histochemistry analysis of <i>Bscl2</i> mRNA distribution in coronal section across three rostral-to-caudal levels of adult PVN and DVC. (<b>A–C</b>) <sup>35</sup>S-labelled <i>Bscl2</i> mRNA expression in the PVN demonstrating robust labelling in the ventral (A), medial magnocellular (B), lateral magnocellular (B, C) and posterior domains (C). Scattered <i>Bscl2</i> labelled cells were expressed in the anterior and medial (B, C) parvicellular portion. (<b>D–F</b>) <sup>35</sup>S-labelled <i>Bslc2</i> mRNA expression in the DVC was highest within the 10N at the level of the area postrema. Within the NTS the preponderance of <i>Bscl2</i> mRNA was localised to the medial and ventral domains (E, F). No expression was detected in the area postrema (E). 4v, fourth ventricle; 10N, dorsal motor nucleus of the vagus; 12N, hypoglossal nucleus; AP, area postrema; cc, central canal; PaAP, PVN anterior parvicellular; PaLM, PVN lateral magnocellular; PaMM, PVN medial magnocellular; PaMP, PVN medial parvicellular; PaPo, PVN posterior; PaV, PVN ventral; SolC, NTS commissural; SolDL, NTS dorsolateral; SolG, NTS gelatinous; SolIM, NTS intermediate; SolM, NTS medial; SolV, NTS ventral; SolVL, NTS ventrolateral.</p

    Validation of seipin antibody in the PVN and DVC of adult mouse.

    No full text
    <p>Dual <i>Bscl2</i> fluorescent in situ hybridisation and seipin immunohistochemistry. (<b>A–C</b>) Co-localisation of <i>Bscl2</i> mRNA and seipin in the magnocellular domain of the paraventricular nucleus of the hypothalamus (PVN) and (<b>G–I</b>) dorsal vagal complex (DVC). Co-localisation denoted by yellow colouring in panels C and I. Negative controls for fluorescent in situ hybridisation and immunohistochemical protocols in the PVN (<b>D–F</b>) and DVC (<b>J–L</b>) revealed no non-specific staining. Inserts (<b>C′</b>) and (<b>I′</b>) show high magnification images of cellular co-localisation. Scale bar in (A) represents 25 µm and applies to figures A<b>–</b>L; scale bar in (C′) represents 10 µm and applies to I′.3v, third ventricle; cc, central canal.</p

    Functional <i>Grb10</i> is required in mother and pup for WT offspring body proportions.

    No full text
    <p>(A) Lean/fat mass ratio in a subset of cross-fostered pups indicating that <i>Grb10</i> ablation in either nurse or pup increases the lean/fat mass ratio relative to WT pups raised by WT nurses. (B) Total lean mass. (C) Total fat mass. (D) Lean/fat mass ratio in a subset of cross-fostered pups, indicating that the body composition of <i>Grb10KO</i><sup>m/+</sup> pups raised by <i>Grb10KO</i><sup>m/+</sup> nurses is similar to that of WT pups raised by WT or <i>Grb10KO</i><sup>m/+</sup> nurses. Data points represent individual animals; mean values are represented by horizontal lines. Datasets in (B) and (C) were analysed using one-way ANOVA with Tukey's post hoc test. **<i>p</i><0.01. ns, not significant.</p

    Overview of complementary <i>Grb10</i> functions in mother and pup.

    No full text
    <p><i>Grb10</i> expressed in the mother promotes postnatal nutrient supply through the mammary gland, while offspring <i>Grb10</i> suppresses nutrient demand. Together, this regulation of nutrient acquisition ensures offspring achieve an optimal body size. Body proportions are also influenced by both <i>Grb10</i> expressed in the mother and in the offspring. Offspring <i>Grb10</i> suppresses the development of lean mass, while offspring fat mass is promoted by <i>Grb10</i> expressed in the mother and acting on postnatal nutrient supply, jointly promoting optimal offspring body proportions.</p

    Characterisation of CRM1 and STAT5-mediated expression of <i>Grb10</i>.

    No full text
    <p>(A) <i>In silico</i> identification of conserved elements among selected vertebrate sequences. Conserved intronic sequences between <i>Grb10</i> homologs are plotted against annotated mouse transcripts. The PReMod track shows the position of the single regulatory module (CRM1). This site aligns with a sequence highly conserved between mouse, human, chimpanzee, cow, and chicken (highlighted). (B) Assay for DNase I hypersensitivity at CRM1, using probe A. A 6 kb <i>Bam</i>HI fragment was detected in all samples. A 3.8 kb DNase I digestion fragment was detected in brain, but not liver, chromatin exposed to 200 U DNase I (arrow). The label “B” indicates a <i>Bam</i>HI site. (C) <i>In situ</i> hybridisation autoradiographs showing examples of overlapping sites of <i>Grb10</i> and <i>Stat5b</i> mRNA expression in adult mouse brain, including the arcuate nucleus of the hypothalamus (ARC), dorsomedial nucleus of the hypothalamus (DMH), lateral septal nucleus (LSV), medial amygdaloid nucleus (posteroventral part) (MePV), medial habenular nucleus (MHb), medial preoptic nucleus (MPA), median preoptic nucleus (medial part) (MPOM), periaqueductal grey (PAG), paraventricular thalamic nucleus (PVA), paraventricular nucleus of the hypothalamus (PVH), supraoptic nucleus (SON), ventromedial nucleus of the hypothalamus (VMH), and ventraltegmental area (VTA). (D) <i>In vitro</i> transfection assay of the enhancer capability of CRM1. Luciferase activity was measured in cells transfected with a minimal promoter driving luciferase (pGL3-Pro) or with CRM1 cloned upstream of the minimal promoter (pGL3-Pro-CRM1). Only pGL3-Pro-CRM1 responded to increasing doses of constitutively active STAT5b (STAT5b1*6). ***<i>p</i><0.001 (one-way ANOVA).</p

    Comparison of <i>Grb10KO</i> and <i>Grb10Δ2-4</i> mice.

    No full text
    <p>(A) Structure of <i>Grb10</i>, according to UCSC annotation, showing numbered exons (boxes) and translated regions (filled boxes). The integrated gene-trap cassettes include splice acceptor (SA) and polyadenylation (pA) signals, and a <i>LacZ</i> reporter. (B) Comparative <i>LacZ</i> staining of bisected embryos at e14.5 inheriting the <i>Grb10KO</i> and <i>Grb10Δ2-4</i> alleles through each of the parental lines. CNS expression observed in <i>Grb10KO</i><sup>+/p</sup> embryos is not detected in <i>Grb10Δ2-4</i><sup>+/p</sup> embryos. (C) Comparative <i>LacZ</i> staining of adult mammary glands at days 7.5 and 12.5 of gestation (G7.5, G12.5) and day 6 of lactation (L6), showing pregnancy-dependent reporter expression in <i>Grb10KO</i><sup>m/+</sup> but not <i>Grb10Δ2-4</i><sup>m/+</sup> females. WT (+/+) glands were stained with carmine alum to illustrate morphological changes.</p
    corecore