3,155 research outputs found

    Dynamical description of vesicle growth and shape change

    Full text link
    We systematize and extend the description of vesicle growth and shape change using linear nonequilibrium thermodynamics. By restricting the study to shape changes from spheres to axisymmetric ellipsoids, we are able to give a consistent formulation which includes the lateral tension of the vesicle membrane. This allows us to generalize and correct a previous calculation. Our present calculations suggest that, for small growing vesicles, a prolate ellipsoidal shape should be favored over oblate ellipsoids, whereas for large growing vesicles oblates should be favored over prolates. The validity of this prediction is examined in the light of the various assumptions made in its derivation.Comment: 6 page

    A Simulation Model of Periarterial Clearance of Amyloid-β from the Brain

    Get PDF
    The accumulation of soluble and insoluble amyloid-β (Aβ) in the brain indicates failure of elimination of Aβ from the brain with age and Alzheimer's disease (AD). There is a variety of mechanisms for elimination of Aβ from the brain. They include the action of microglia and enzymes together with receptor-mediated absorption of Aβ into the blood and periarterial lymphatic drainage of Aβ. Although the brain possesses no conventional lymphatics, experimental studies have shown that fluid and solutes, such as Aβ, are eliminated from the brain along 100 nm wide basement membranes in the walls of cerebral capillaries and arteries. This lymphatic drainage pathway is reflected in the deposition of Aβ in the walls of human arteries with age and AD as cerebral amyloid angiopathy (CAA). Initially, Aβ diffuses through the extracellular spaces of gray matter in the brain and then enters basement membranes in capillaries and arteries to flow out of the brain. Although diffusion through the extracellular spaces of the brain has been well characterized, the exact mechanism whereby perivascular elimination of Aβ occurs has not been resolved. Here we use a computational model to describe the process of periarterial drainage in the context of diffusion in the brain, demonstrating that periarterial drainage along basement membranes is very rapid compared with diffusion. Our results are a validation of experimental data and are significant in the context of failure of periarterial drainage as a mechanism underlying the pathogenesis of AD as well as complications associated with its immunotherapy

    Functional analysis of epilepsy-associated variants in STXBP1/Munc18-1 using humanised Caenorhabditis elegans

    Get PDF
    Objective: Genetic variants in STXBP1 , which encodes the conserved exocytosis protein Munc18‐1, are associated with a variety of infantile epilepsy syndromes. We aimed to develop an in vivo Caenorhabditis elegans model that could be used to test the pathogenicity of such variants in a cost‐effective manner. Methods: The CRISPR/Cas9 method was used to introduce a null mutation into the unc‐18 gene (the C. elegans orthologue of STXBP1 ), thereby creating a paralyzed worm strain. We subsequently rescued this strain with transgenes encoding the human STXBP1/Munc18‐1 protein (wild‐type and eight different epilepsy‐associated missense variants). The resulting humanized worm strains were then analyzed via behavioral, electrophysiological, and biochemical approaches. Results: Transgenic expression of wild‐type human STXBP1 protein fully rescued locomotion in both solid and liquid media to the same level as the standard wild‐type worm strain, Bristol N2. Six variant strains (E59K, V84D, C180Y, R292H, L341P, R551C) exhibited impaired locomotion, whereas two (P335L, R406H) were no different from worms expressing wild‐type STXBP1. Electrophysiological recordings revealed that all eight variant strains displayed less frequent and more irregular pharyngeal pumping in comparison to wild‐type STXBP1‐expressing strains. Four strains (V84D, C180Y, R292H, P335L) exhibited pentylenetetrazol‐induced convulsions in an acute assay of seizure‐like activity, in contrast to worms expressing wild‐type STXBP1. No differences were seen between wild‐type and variant STXBP1 strains in terms of mRNA abundance. However, STXBP1 protein levels were reduced to 20%‐30% of wild‐type in all variants, suggesting that the mutations result in STXBP1 protein instability. Significance: The approach described here is a cost‐effective in vivo method for establishing the pathogenicity of genetic variants in STXBP1 and potentially other conserved neuronal proteins. Furthermore, the humanized strains we created could potentially be used in the future for high‐throughput drug screens to identify novel therapeutics

    Fecal Coliform Bacteria TMDL Implementation on Cane Creek and Little Cane Creek in Oconee County, South Carolina

    Get PDF
    2008 S.C. Water Resources Conference - Addressing Water Challenges Facing the State and Regio

    Electrospun gelatin-based scaffolds as a novel 3D platform to study the function of contractile smooth muscle cells in vitro

    Get PDF
    Contractile dysfunction of smooth muscle (SM) is a feature of chronic cardiovascular, respiratory and gastro-intestinal diseases. Owing to the low availability of human ex vivo tissue for the assessment of SM contractile function, the aim of this study was to develop a novel in vitro SM model that possesses the ability to contract, and a method to measure its contractility. A range of electrospun scaffolds were produced from crosslinked gelatin and methacrylated gelatin (GelMA), generating highly aligned scaffolds with average fibre diameters ranging from 200 nm to several micrometres. Young's moduli of the scaffolds ranged from 1x105 to 1x107 Pa. Primary aortic smooth muscle cells (AoSMCs; rat) cells readily adhered to and proliferated on the fibrous scaffolds for up to 10 days. They formed highly aligned populations following the topographical cues of the aligned scaffolds and stained positive for SM markers, indicating a contractile phenotype. Cell-seeded GelMA scaffolds were able, upon stimulation with uridine 5'-triphosphate (UTP), to contract and their attachment to a force transducer allowed the force of contraction to be measured. Hence, these electrospun GelMA fibres can be used as biomimetic scaffolds for SM cell culture and in vitro model development, and enables the contractile forces generated by the aligned three-dimensional sheet of cells to be directly measured. This will supplement in vitro drug screening tools and facilitate discovery of disease mechanisms

    Stability of growing vesicles

    Full text link
    We investigate the stability of growing vesicles using the formalism of nonequilibrium thermodynamics. The vesicles are growing due to the accretion of lipids to the bilayer which forms the vesicle membrane. The thermodynamic description is based on the hydrodynamics of a water{/}lipid mixture together with a model of the vesicle as a discontinuous system in the sense of linear nonequilibrium thermodynamics. This formulation allows the forces and fluxes relevant to the dynamic stability of the vesicle to be identified. The method is used to analyze the stability of a spherical vesicle against arbitrary axisymmetric perturbations. It is found that there are generically two critical radii at which changes of stability occur. In the case where the perturbation takes the form of a single zonal harmonic, only one of these radii is physical and is given by the ratio 2Lp/Lγ2 L_p / L_\gamma, where LpL_p is the hydraulic conductivity and LγL_\gamma is the Onsager coefficient related to changes in membrane area due to lipid accretion. The stability of such perturbations is related to the value of ll corresponding to the particular zonal harmonic: those with lower ll are more unstable than those with higher ll. Possible extensions of the current work and the need for experimental input are discussed.Comment: 17 pages, 3 figure

    Planetary Candidates Observed by Kepler, III: Analysis of the First 16 Months of Data

    Get PDF
    New transiting planet candidates are identified in sixteen months (May 2009 - September 2010) of data from the Kepler spacecraft. Nearly five thousand periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1,091 viable new planet candidates, bringing the total count up to over 2,300. Improved vetting metrics are employed, contributing to higher catalog reliability. Most notable is the noise-weighted robust averaging of multi-quarter photo-center offsets derived from difference image analysis which identifies likely background eclipsing binaries. Twenty-two months of photometry are used for the purpose of characterizing each of the new candidates. Ephemerides (transit epoch, T_0, and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (Rp/R*), reduced semi-major axis (d/R*), and impact parameter (b). The largest fractional increases are seen for the smallest planet candidates (197% for candidates smaller than 2Re compared to 52% for candidates larger than 2Re) and those at longer orbital periods (123% for candidates outside of 50-day orbits versus 85% for candidates inside of 50-day orbits). The gains are larger than expected from increasing the observing window from thirteen months (Quarter 1-- Quarter 5) to sixteen months (Quarter 1 -- Quarter 6). This demonstrates the benefit of continued development of pipeline analysis software. The fraction of all host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident. The progression toward smaller planets at longer orbital periods with each new catalog release suggests that Earth-size planets in the Habitable Zone are forthcoming if, indeed, such planets are abundant.Comment: Submitted to ApJS. Machine-readable tables are available at http://kepler.nasa.gov, http://archive.stsci.edu/kepler/results.html, and the NASA Exoplanet Archiv
    corecore