91 research outputs found

    Impeller leakage flow modeling for mechanical vibration control

    Get PDF
    HPOTP and HPFTP vibration test results have exhibited transient and steady characteristics which may be due to impeller leakage path (ILP) related forces. For example, an axial shift in the rotor could suddenly change the ILP clearances and lengths yielding dynamic coefficient and subsequent vibration changes. ILP models are more complicated than conventional-single component-annular seal models due to their radial flow component (coriolis and centrifugal acceleration), complex geometry (axial/radial clearance coupling), internal boundary (transition) flow conditions between mechanical components along the ILP and longer length, requiring moment as well as force coefficients. Flow coupling between mechanical components results from mass and energy conservation applied at their interfaces. Typical components along the ILP include an inlet seal, curved shroud, and an exit seal, which may be a stepped labyrinth type. Von Pragenau (MSFC) has modeled labyrinth seals as a series of plain annular seals for leakage and dynamic coefficient prediction. These multi-tooth components increase the total number of 'flow coupled' components in the ILP. Childs developed an analysis for an ILP consisting of a single, constant clearance shroud with an exit seal represented by a lumped flow-loss coefficient. This same geometry was later extended to include compressible flow. The objective of the current work is to: supply ILP leakage-force impedance-dynamic coefficient modeling software to MSFC engineers, base on incompressible/compressible bulk flow theory; design the software to model a generic geometry ILP described by a series of components lying along an arbitrarily directed path; validate the software by comparison to available test data, CFD and bulk models; and develop a hybrid CFD-bulk flow model of an ILP to improve modeling accuracy within practical run time constraints

    Simulation of cryogenic turbopump annular seals

    Get PDF
    The goal of the current work is to develop software that can accurately predict the dynamic coefficients, forces, leakage and horsepower loss for annular seals which have a potential for affecting the rotordynamic behavior of the pumps. The fruit of last year's research was the computer code SEALPAL which included capabilities for linear tapered geometry, Moody friction factor and inlet pre-swirl. This code produced results which in most cases compared very well with check cases presented in the literature. TAMUSEAL Icode, which was written to improve SEALPAL by correcting a bug and by adding more accurate integration algorithms and additional capabilities, was then used to predict dynamic coefficients and leakage for the NASA/Pratt and Whitney Alternate Turbopump Development (ATD) LOX Pump's seal

    Piezoelectric pushers for active vibration control of rotating machinery

    Get PDF
    The active control of rotordynamic vibrations and stability by magnetic bearings and electromagnetic shakers have been discussed extensively in the literature. These devices, though effective, are usually large in volume and add significant weight to the stator. The use of piezoelectric pushers may provide similar degrees of effectiveness in light, compact packages. Tests are currently being conducted with piezoelectric pusher-based active vibration control. Results from tests performed on NASA test rigs as preliminary verification of the related theory are presented

    Linearized force representations for turbopump liquid annular seals

    Get PDF
    The analysis and the accompanying FORTRAN code, SEALPAL1, to simulate liquid annular seals with axial taper, Moody friction factors, and pre-swirl, are discussed. The output of the code includes all dynamic coefficients (stiffness, dampings, and inertias), leakage rate, torque, and horsepower loss. The computer code results were compared with five cases from the literature. The agreement was very good in almost all instances, except several predicted cross coupled stiffnesses were significantly lower than those appearing in the literature. This disagreement could reflect a theoretical or a programming error by the researcher or in the literature, or it could be a result of the difference in friction factor models or other assumptions employed

    Simulation of cryogenic turbopump annular seals

    Get PDF
    San Andres employed the NBS software package MIPROPS to account for density's dependence on pressure in the simulation of liquid annular seals. His example on a LH2 seal showed a significant change in the mass coefficient compared to a constant density model. San Andres, Yang, and Childs extended this analysis by including the pressure and temperature dependence of density, specific heat, viscosity, volumetric expansion, and thermal conductivity in a coupled solution of the energy, momentum, and continuity equations. Their example showed very significant changes in stiffness and inertia for a high speed (38,000 rpm), large L/D ratio (0.5) LOX seal, as compared to their constant temperature results. The current research rederived the San Andres-Yang-Childs (SYC) analysis and extended it to include not only the Moody friction model of SYC but also the Hir's friction model. The derivation begins with obtaining the local differential equations of continuity, momentum, and energy conservation in the seal. These equations are averaged across the film thickness to obtain the resulting 'bulk flow' differential equations. Shear stress and convective heat loss through the stator (seal) and rotor are related to the Moody and Hir's friction factor model. The Holman analogy is employed to relate heat conduction in or out of the fluid film's boundary layer to the friction induced shear stress

    Test Rig Development for the Magnetic Bearing's Backup Bearing Contact Forces Measurement during Rotor Drops

    Get PDF
    International audienceThis paper introduces a new catcher bearing (CB) test rig. Compared with the CB test rig described in the previous published literatures, firstly, this test rig eliminates the influence of the motor and coupling on the rotor drop process by implementing a magnetic coupling. The magnetic coupling can make it possible to mechanically pull back the drive motor axially, separating it from the rotating assembly to prevent its influence on the rotor drop. Secondly, the test rig enables the rotor drop contact force measurement in both the horizontal and vertical direction. The implementation of a 3 axis piezoelectric load cell eliminates the measurement error caused by the friction forces on the contact surfaces between the CB housing and the single axis load cells that applied by the former researchers [1,2,9] for the rotor drop force measurement. The 10K Hz sampling frequency of the data acquisition (DAQ) system and the high stiffness of the load cell can also guarantee the accuracy of the force measurement. Thirdly, the tachometers are installed to not only measure the spin speed of the rotor but the spin speed of the catcher bearing inner race. The developed test rig can provide the rotor drop test data to validate the mathematical model of the rotor drop event. Additionally, this test rig is also an essential apparatus for the future experimental research on both the catcher bearing fatigue life estimation, and the catcher bearing damper devices development

    Influence of Temperature and Impact Velocity on the Coefficient of Restitution

    Get PDF
    Tests were performed on a variety of material combinations to understand the effects of temperature and impact velocity on the coefficient of restitution (COR). The tests, performed in a vacuum at room and liquid nitrogen temperatures, consisted of dropping a ball onto a target plate and recording the impact time history of the ball's bounce-down. Time intervals between successive impacts were measured from the time history and used to calculate the coefficient of restitution and impact velocity for each impact. Maximum impact velocities ranged from approximately 33 (0.84) to 52 in./s (1.32 m/s). Five ball-target plate combinations were evaluated: type 316 stainless steel (316 SS) on 316 SS; M50 tool steel on Armalon; M50 on 4340 steel; 410C steel on Armalon; and copper on copper. The coefficient of restitution for the 316 SS-316 SS, M50-Armalon, 410C-Armalon, and copper-copper combinations increased as the temperature and impact velocity decreased. The coefficient for the hard steel combination, M50-4340, was not greatly influenced by temperature or variations in impact velocity

    Liquid Annular Seal CFD Analysis for Rotordynamic Force Prediction

    Get PDF
    A commercially available code is utilized to analyze a plain and grooved liquid annular seal. These type seals are commonly used in modern turbopumps and have a pronounced effect on the rotordynamic behavior of these systems. Accurate prediction of both leakage and dynamic reaction forces is vital to ensure good performance and sound mechanical operation. The code SCISEAL developed by CFDRC is a generic 3-D, finite volume based CFD code solving the 3-D Reynolds averaged Navier Stokes equations. The code allows body-fitted, multi-blocked structured grids, turbulence modeling, rotating coordinate frames, as well as integration of dynamic pressure and shear forces on the rotating journal. The code may be used with the commercially available pre-and post-processing codes from CFDRC as well

    High-Temperature Switched-Reluctance Electric Motor

    Get PDF
    An eight-pole radial magnetic bearing has been modified into a switched-reluctance electric motor capable of operating at a speed as high as 8,000 rpm at a temperature as high as 1,000 F (=540 C). The motor (see figure) is an experimental prototype of starter-motor/generator units that have been proposed to be incorporated into advanced gas turbine engines and that could operate without need for lubrication or active cooling. The unique features of this motor are its electromagnet coils and, to some extent, its control software. Heretofore, there has been no commercial-off-the-shelf wire capable of satisfying all of the requirements for fabrication of electromagnet coils capable of operation at temperatures up to 1,000 F (=540 C). The issues addressed in the development of these electromagnet coils included thermal expansion, oxidation, pliability to small bend radii, micro-fretting, dielectric breakdown, tensile strength, potting compound, thermal conduction, and packing factor. For a test, the motor was supported, along with a rotor of 18 lb (.8-kg) mass, 3-in. (.7.6-cm) diameter, 21-in. (.53-cm) length, on bearings packed with high-temperature grease. The motor was located at the mid span of the rotor and wrapped with heaters. The motor stator was instrumented with thermocouples. At the time of reporting the information for this article, the motor had undergone 14 thermal cycles between room temperature and 1,000 F (.540 C) and had accumulated operating time >27.5 hours at 1,000 F (=540 C). The motor-controller hardware includes a personal computer equipped with analog-to-digital input and digital-to-analog output cards. The controller software is a C-language code that implements a switched-reluctance motor-control principle: that is, it causes the coils to be energized in a sequence timed to generate a rotating magnetic flux that creates a torque on a scalloped rotor. The controller can operate in an open- or closed-loop mode. In addition, the software has been modified to enable the simultaneous operation of the prototype motor or another, similar apparatus as both a motor and a magnetic bearing. Combined bearing/motor operation has been demonstrated at room temperature but had not yet been demonstrated at high temperature at the time of reporting the information for this article
    corecore