186 research outputs found

    Incorporating anthropogenic influences into fire probability models : effects of human activity and climate change on fire activity in California

    Get PDF
    The costly interactions between humans and wildfires throughout California demonstrate the need to understand the relationships between them, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires, with previously published estimates of increases ranging from nine to fifty-three percent by the end of the century. Our goal is to assess the role of climate and anthropogenic influences on the state's fire regimes from 1975 to 2050. We develop an empirical model that integrates estimates of biophysical indicators relevant to plant communities and anthropogenic influences at each forecast time step. Historically, we find that anthropogenic influences account for up to fifty percent of explanatory power in the model. We also find that the total area burned is likely to increase, with burned area expected to increase by 2.2 and 5.0 percent by 2050 under climatic bookends (PCM and GFDL climate models, respectively). Our two climate models show considerable agreement, but due to potential shifts in rainfall patterns, substantial uncertainty remains for the semiarid inland deserts and coastal areas of the south. Given the strength of human-related variables in some regions, however, it is clear that comprehensive projections of future fire activity should include both anthropogenic and biophysical influences. Previous findings of substantially increased numbers of fires and burned area for California may be tied to omitted variable bias from the exclusion of human influences. The omission of anthropogenic variables in our model would overstate the importance of climatic ones by at least 24%. As such, the failure to include anthropogenic effects in many models likely overstates the response of wildfire to climatic change

    Micrometeorological and Soil Data for Calculating Evapotranspiration for Rainier Mesa, Nevada Test Site, Nevada 2002-05.

    Get PDF
    Micrometeorological and soil-moisture data were collected at two instrumented sites on Rainier Mesa at the Nevada Test Site, January 1, 2002/August 23, 2005. Data collected at each site include net radiation, air temperature, and relative humidity at two heights; wind speed and direction; subsurface soil heat flux; subsurface soil temperature; volumetric soil water; and matric water potential. These data were used to estimate 20-minute average and daily average evapotranspiration values. The data presented in this report are collected and calculated evapotranspiration rates

    Erosion of refugia in the Sierra Nevada meadowsnetwork with climate change

    Get PDF
    Climate refugia management has been proposed as a climate adaptation strategy in the face of global change. Key to this strategy is identification of these areas as well as an understanding of how they are connected on the landscape. Focusing on meadows of the Sierra Nevada in California, we examined multiple factors affecting connectivity using circuit theory, and determined how patches have been and are expected to be affected by climate change. Connectivity surfaces varied depending upon the underlying hypothesis, although meadow area and elevation were important features for higher connectivity. Climate refugia that would promote population persistence were identified from downscaled climate layers, based on locations with minimal climatic change from historical conditions. This approach was agnostic to specific species, yielding a broad perspective about changes and localized habitats. Connectivity was not a consistent predictor of refugial status in the 20th century, but expected future climate refugia tended to have higher connectivity than those that recently deviated from historical conditions. Climate change is projected to reduce the number of refugial meadows on a variety of climate axes, resulting in a sparser network of potential refugia across elevations. Our approach provides a straightforward method that can be used as a tool to prioritize places for climate adaptation.This work was primarily supported by a grant from the California Landscape Conservation Cooperative (80250-BJ127) to TLM, CM, and SRB, along with funding from the U.C. Berkeley Initiative in Global Change Biology to SRB and an NSF Bioinformatics Postdoctoral Research Fellowship to TLM. We thank Eric Berlow, Bob Westfall, Connie Millar, Sarah Stock, and David Wright for analytical input. We thank J.Z. Drexler and at least two anonymous reviewers for comments that improved earlier drafts

    A randomized, double-blind, placebo-controlled trial of coenzyme Q10 in Huntington disease

    Get PDF
    Objective: To test the hypothesis that chronic treatment of early-stage Huntington disease (HD) with high-dose coenzyme Q10 (CoQ) will slow the progressive functional decline of HD. Methods: We performed a multicenter randomized, double-blind, placebo-controlled trial. Patients with early-stage HD (n = 609) were enrolled at 48 sites in the United States, Canada, and Australia from 2008 to 2012. Patients were randomized to receive either CoQ 2,400 mg/d or matching placebo, then followed for 60 months. The primary outcome variable was the change from baseline to month 60 in Total Functional Capacity score (for patients who survived) combined with time to death (for patients who died) analyzed using a joint-rank analysis approach. Results: An interim analysis for futility revealed a conditional power of <5% for the primary analysis, prompting premature conclusion in July 2014. No statistically significant differences were seen between treatment groups for the primary or secondary outcome measures. CoQ was generally safe and well-tolerated throughout the study. Conclusions: These data do not justify use of CoQ as a treatment to slow functional decline in HD
    corecore