205 research outputs found
Model Atmospheres for X-ray Bursting Neutron Stars
The hydrogen and helium accreted by X-ray bursting neutron stars is
periodically consumed in runaway thermonuclear reactions that cause the entire
surface to glow brightly in X-rays for a few seconds. With models of the
emission, the mass and radius of the neutron star can be inferred from the
observations. By simultaneously probing neutron star masses and radii, X-ray
bursts are one of the strongest diagnostics of the nature of matter at
extremely high densities. Accurate determinations of these parameters are
difficult, however, due to the highly non-ideal nature of the atmospheres where
X-ray bursts occur. Observations from X-ray telescopes such as RXTE and NuStar
can potentially place strong constraints on nuclear matter once uncertainties
in atmosphere models have been reduced. Here we discuss current progress on
modeling atmospheres of X-ray bursting neutron stars and some of the challenges
still to be overcome.Comment: 25 pages, 14 figure
The executive government of the Cape of Good Hope, 1825-54
The study of administrative processes is a relaltively new one both in the field of history and sociology. In both disciplines what is required is study of the sructure and growth of adminstrative systems and of the impact of administrative action on the community it seeks to serve and which it often provokes. In the field of history, Professor F. Tout in his chapters on administrative history ... gave new vitality and understanding to medieval studies. In the main, South African history, though probably not more so than other Commonwealth countries, has been less fortunate. Preface, p. 1
Variations in Duschinsky rotations in m-fluorotoluene and m-chlorotoluene during excitation and ionization
We investigate Duschinsky rotation/mixing between three vibrations for both m-fluorotoluene (mFT) and m-chlorotoluene (mClT), during electronic excitation and ionization. In the case of mFT, we investigate both the S1 â S0 electronic transition and the D0+ â S1 ionization, by two-dimensional laser-induced fluorescence (2D-LIF) and zero-electron-kinetic energy (ZEKE) spectroscopy, respectively; for mClT, only the D0+ â S1 ionization was investigated, by ZEKE spectroscopy. The Duschinsky mixings are different in the two molecules, owing to shifts in vibrational wavenumber and variations in the form of the fundamental vibrations between the different electronic states. There is a very unusual behavior for two of the mFT vibrations, where apparently different conclusions for the identity of two S1 vibrations arise from the 2D-LIF and ZEKE spectra. We compare the experimental observations to the calculated Duschinsky matrices, finding that these successfully pick up the key geometric changes associated with each electronic transition and so are successful in qualitatively explaining the vibrational activity in the spectra. Experimental values for a number of vibrations across the S0, S1, and D0+ states are reported and found to compare well to those calculated. Assignments are made for the observed vibration-torsion (âvibtorâ) bands, and the effect of vibrational motion on the torsional potential is briefly discussed
Identifying preferred features of weight loss programs for adults with or at risk of type 2 diabetes: a discrete choice experiment with 3,960 adults in the U.K.
OBJECTIVE: To understand preferences for features of weight loss programs among adults with or at risk of type 2 diabetes in the U.K.
RESEARCH DESIGN AND METHODS: We conducted a discrete choice experiment with 3,960 U.K. adults living with overweight (n = 675 with type 2 diabetes). Preferences for seven characteristics of weight loss programs were analyzed. Simulations from choice models using the experimental data predicted uptake of available weight loss programs. Patient groups comprising those who have experience with weight loss programs, including from minority communities, informed the experimental design.
RESULTS: Preferences did not differ between individuals with and without type 2 diabetes. Preferences were strongest for type of diet. Healthy eating was most preferred relative to total diet replacement (odds ratio [OR] 2.24; 95% CI 2.04â2.44). Individual interventions were more popular than group interventions (OR 1.40; 95% CI 1.34â1.47). Participants preferred programs offering weight loss of 10â15 kg (OR 1.37; 95% CI 1.28â1.47) to those offering loss of 2â4 kg. Online content was preferred over in-person contact (OR 1.24; 95% CI 1.18â1.30). There were few differences in preferences by gender or ethnicity, although weight loss was more important to women than to men, and individuals from ethnic minority populations identified more with programs where others shared their characteristics. Modeling suggested that tailoring programs to individual preferences could increase participation by âŒ17 percentage points (68% in relative terms).
CONCLUSIONS: Offering a range of weight loss programs targeting the preferred attributes of different patient groups could potentially encourage more people to participate in weight loss programs and support those living with overweight to reduce their weight
Constraints on the Progenitor System of the Type Ia Supernova SN 2011fe/PTF11kly
Type Ia supernovae (SNe) serve as a fundamental pillar of modern cosmology,
owing to their large luminosity and a well-defined relationship between
light-curve shape and peak brightness. The precision distance measurements
enabled by SNe Ia first revealed the accelerating expansion of the universe,
now widely believed (though hardly understood) to require the presence of a
mysterious "dark" energy. General consensus holds that Type Ia SNe result from
thermonuclear explosions of a white dwarf (WD) in a binary system; however,
little is known of the precise nature of the companion star and the physical
properties of the progenitor system. Here we make use of extensive historical
imaging obtained at the location of SN 2011fe/PTF11kly, the closest SN Ia
discovered in the digital imaging era, to constrain the visible-light
luminosity of the progenitor to be 10-100 times fainter than previous limits on
other SN Ia progenitors. This directly rules out luminous red giants and the
vast majority of helium stars as the mass-donating companion to the exploding
white dwarf. Any evolved red companion must have been born with mass less than
3.5 times the mass of the Sun. These observations favour a scenario where the
exploding WD of SN 2011fe/PTF11kly, accreted matter either from another WD, or
by Roche-lobe overflow from a subgiant or main-sequence companion star.Comment: 22 pages, 6 figures, submitte
International Teaching Programme
Nicolaides-Baraitser syndrome (NBS) is an infrequently described condition, thus far reported in five cases. In order to delineate the phenotype and its natural history in more detail, we gathered data on 18 hitherto unreported patients through a multi-center collaborative study, and follow-up data of the earlier reported patients. A detailed comparison of the 23 patients is provided. NBS is a distinct and recognizable entity, and probably has been underdiagnosed until now. Main clinical features are severe mental retardation with absent or limited speech, seizures, short stature, sparse hair, typical facial characteristics, brachydactyly, prominent finger joints and broad distal phalanges. Some of the features are progressive with time. The main differential diagnosis is Coffin-Siris syndrome. There is no important gender difference in occurrence and frequency of the syndrome, and all cases have been sporadic thus far. Microarray analysis performed in 14 of the patients gave normal results. Except for the progressive nature there are no clues to the cause. (C) 2009 Wiley-Liss, Inc
Tumour risks and genotype-phenotype correlations associated with germline variants in succinate dehydrogenase subunit genes SDHB, SDHC and SDHD.
BACKGROUND: Germline pathogenic variants in SDHB/SDHC/SDHD are the most frequent causes of inherited phaeochromocytomas/paragangliomas. Insufficient information regarding penetrance and phenotypic variability hinders optimum management of mutation carriers. We estimate penetrance for symptomatic tumours and elucidate genotype-phenotype correlations in a large cohort of SDHB/SDHC/SDHD mutation carriers. METHODS: A retrospective survey of 1832 individuals referred for genetic testing due to a personal or family history of phaeochromocytoma/paraganglioma. 876 patients (401 previously reported) had a germline mutation in SDHB/SDHC/SDHD (n=673/43/160). Tumour risks were correlated with in silico structural prediction analyses. RESULTS: Tumour risks analysis provided novel penetrance estimates and genotype-phenotype correlations. In addition to tumour type susceptibility differences for individual genes, we confirmed that the SDHD:p.Pro81Leu mutation has a distinct phenotype and identified increased age-related tumour risks with highly destabilising SDHB missense mutations. By Kaplan-Meier analysis, the penetrance (cumulative risk of clinically apparent tumours) in SDHB and (paternally inherited) SDHD mutation-positive non-probands (n=371/67 with detailed clinical information) by age 60 years was 21.8% (95% CI 15.2% to 27.9%) and 43.2% (95% CI 25.4% to 56.7%), respectively. Risk of malignant disease at age 60 years in non-proband SDHB mutation carriers was 4.2%(95% CI 1.1% to 7.2%). With retrospective cohort analysis to adjust for ascertainment, cumulative tumour risks for SDHB mutation carriers at ages 60 years and 80 years were 23.9% (95% CI 20.9% to 27.4%) and 30.6% (95% CI 26.8% to 34.7%). CONCLUSIONS: Overall risks of clinically apparent tumours for SDHB mutation carriers are substantially lower than initially estimated and will improve counselling of affected families. Specific genotype-tumour risk associations provides a basis for novel investigative strategies into succinate dehydrogenase-related mechanisms of tumourigenesis and the development of personalised management for SDHB/SDHC/SDHD mutation carriers
Catching Element Formation In The Act
Gamma-ray astronomy explores the most energetic photons in nature to address
some of the most pressing puzzles in contemporary astrophysics. It encompasses
a wide range of objects and phenomena: stars, supernovae, novae, neutron stars,
stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays
and relativistic-particle acceleration, and the evolution of galaxies. MeV
gamma-rays provide a unique probe of nuclear processes in astronomy, directly
measuring radioactive decay, nuclear de-excitation, and positron annihilation.
The substantial information carried by gamma-ray photons allows us to see
deeper into these objects, the bulk of the power is often emitted at gamma-ray
energies, and radioactivity provides a natural physical clock that adds unique
information. New science will be driven by time-domain population studies at
gamma-ray energies. This science is enabled by next-generation gamma-ray
instruments with one to two orders of magnitude better sensitivity, larger sky
coverage, and faster cadence than all previous gamma-ray instruments. This
transformative capability permits: (a) the accurate identification of the
gamma-ray emitting objects and correlations with observations taken at other
wavelengths and with other messengers; (b) construction of new gamma-ray maps
of the Milky Way and other nearby galaxies where extended regions are
distinguished from point sources; and (c) considerable serendipitous science of
scarce events -- nearby neutron star mergers, for example. Advances in
technology push the performance of new gamma-ray instruments to address a wide
set of astrophysical questions.Comment: 14 pages including 3 figure
The distribution of radioactive 44Ti in Cassiopeia A
The distribution of elements produced in the innermost layers of a supernova explosion is a key diagnostic for studying the collapse of massive stars. Here we present the results of a 2.4 Ms NuSTAR observing campaign aimed at studying the supernova remnant Cassiopeia A (Cas A). We perform spatially resolved spectroscopic analyses of the 44Ti ejecta, which we use to determine the Doppler shift and thus the three-dimensional (3D) velocities of the 44Ti ejecta. We find an initial 44Ti mass of (1.54 ± 0.21) Ă 10â4 Mâ, which has a present-day average momentum direction of 340° ± 15° projected onto the plane of the sky (measured clockwise from celestial north) and is tilted by 58° ± 20° into the plane of the sky away from the observer, roughly opposite to the inferred direction of motion of the central compact object. We find some 44Ti ejecta that are clearly interior to the reverse shock and some that are clearly exterior to it. Where we observe 44Ti ejecta exterior to the reverse shock we also see shock-heated iron; however, there are regions where we see iron but do not observe 44Ti. This suggests that the local conditions of the supernova shock during explosive nucleosynthesis varied enough to suppress the production of 44Ti by at least a factor of two in some regions, even in regions that are assumed to be the result of processes like α-rich freezeout that should produce both iron and titanium
- âŠ