36 research outputs found

    Fabrication of a Low-cost Drum Seeder for Paddy

    Get PDF
    Rice is a staple food crop. Bangladesh produces it extensively which raised the nation into the fourth-largest rice-grower in the world. Transplanting or direct seeding is a major task in rice cultivation where the manual transplanting method requires a huge labor cost which is beyond control in a peak season. Although mechanical rice transplanters become popularization land preparation and seedling rising as a pre transplanting task is costly and labor-intensive. On the other hand, manual broadcasting and machine seeding direct method still exist due to the above method’s problem. Considering spacing accuracies for intercultural operation, drum seeders are an easy and convenient method for Bangladeshi farmers. This research was carried out to design and develop a drum seeder considering existing problems related to the spacing accuracies and cost optimization. It was tested for paddy seeds under laboratory setup. The developed drum seeder has double-rows with 20 cm row spacing which has a 2.4 m working width and weighs only 15 kg. The calibration test of the seeder reveals that the seed rate increased with the decrease in amount of seeds filled with hopper. Filling with one-fourth of drum’s full capacity results in the optimum seed rate (86.33 kg ha-1). On the other hand, an unacceptable seed rate was found (26.68 kg ha-1) when the drum was filled of its full capacity. The performance of the seeder in the laboratory setup was satisfactory and the overall cost to fabricate the drum seeder was found 18.15 USD which is acceptable for farmers. An extension is needed to adopt the drum seeder to the Bangladeshi farmers

    Interferon Gamma, but not Calcitriol Improves the Osteopetrotic Phenotypes in ADO2 Mice

    Get PDF
    ADO2 is a heritable osteosclerotic disorder that usually results from heterozygous missense dominant negative mutations in the chloride channel 7 gene (CLCN7). ADO2 is characterized by a wide range of features and severity, including multiple fractures, impaired vision due to secondary bony overgrowth and/or the lack of the optical canal enlargement with growth, and osteonecrosis/osteomyelitis. The disease is presently incurable, although anecdotal evidence suggests that calcitriol and interferon gamma-1b (IFN-G) may have some beneficial effects. To identify the role of these drugs for the treatment of ADO2, we utilized a knock-in (G213R mutation in Clcn7) ADO2 mouse model that resembles the human disease. Six-week-old ADO2 heterozygous mice were administered vehicle (PBS) or calcitriol or IFN-G 5 times per week for 8 weeks. We determined bone phenotypes using DXA and μCT, and analyzed serum biochemistry and bone resorption markers. ADO2 mice treated with all doses of IFN-G significantly (p<0.05) attenuated the increase of whole body aBMD and distal femur BV/TV gain in both male and female compared to the vehicle group. In contrast, mice treated with low and medium doses of calcitriol showed a trend of higher aBMD and BV/TV whereas high dose calcitriol significantly (p<0.05) increased bone mass compared to the vehicle group. The calcium and phosphorus levels did not differ between vehicle and IFN-G or calcitriol treated mice; however, we detected significantly (p<0.05) elevated levels of CTX/TRAP5b ratio in IFN-G treated mice. Our findings indicate that while IFN-G at all doses substantially improved the osteopetrotic phenotypes in ADO2 heterozygous mice, calcitriol treatment at any dose did not improve the phenotype and at high dose further increased bone mass. Thus, use of high dose calcitriol therapy in ADO2 patients merits serious reconsideration. Importantly, our data support the prospect of a clinical trial of IFN-G in ADO2 patients

    SIBLING Family Genes and Bone Mineral Density: Association and Allele-specific Expression in Humans

    Get PDF
    Osteoporosis is a common complex disorder with reduced bone mineral density (BMD) and increased susceptibility to fracture. Peak BMD is one of the primary determinants of osteoporotic fracture risk, and is under substantial genetic control. Extracellular matrix, a major component of bone, influences BMD by regulating mineral deposition and maintaining cellular activity. It contains several SIBLING family proteins, null mutations of which cause mineralization defects in humans. In this study, we tested 59 single-nucleotide polymorphisms (SNPs) located in the 5 SIBLING family genes (DSPP, DMP1, IBSP, MEPE and SPP1) for association with normal variation in peak BMD in healthy men and women. We measured femoral neck (FN) and lumbar spine (LS) areal BMD by dual energy x-ray absorptiometry (DXA) in 1,692 premenopausal European-American women, 512 premenopausal African-American women and 715 European-American men. SNPs were tested for association with FN and LS BMD in the 3 subsamples. In the European-American women, we observed association (p≤0.005) with LS-BMD for SNPs in DSPP, IBSP and MEPE, and for FN-BMD with SNPs in DMP1 and IBSP. Allele specific regulation of gene expression (ASE) is an important mechanism in which an allele giving rise to modest influence in transcript abundance might result in a predisposition to disease. To identify whether there was ASE of SIBLING family genes at these SNPs, we examined 52 human bone samples obtained from the femoral neck during surgical hip replacement (27 female, 25 male; 44 European-American and 8 African-American). We observed unidirectional ASE for the IBSP gene, with lower expression of the G allele compared to the A allele for SNP rs17013181. Our data suggest that SNPs within the SIBLING genes may contribute to normal variation of peak BMD. Further studies are necessary to identify the functional variants and to determine the mechanisms underlying the differences in ASE and how these differences relate to the pathophysiology of osteoporosis

    Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes

    Get PDF
    Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice overexpressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole-body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions

    High-resolution genome screen for bone mineral density in heterogeneous stock rat

    Get PDF
    We previously demonstrated that skeletal mass, structure, and biomechanical properties vary considerably in heterogeneous stock (HS) rat strains. In addition, we observed strong heritability for several of these skeletal phenotypes in the HS rat model, suggesting that it represents a unique genetic resource for dissecting the complex genetics underlying bone fragility. The purpose of this study was to identify and localize genes associated with bone mineral density in HS rats. We measured bone phenotypes from 1524 adult male and female HS rats between 17 and 20 weeks of age. Phenotypes included dual-energy X-ray absorptiometry (DXA) measurements for bone mineral content and areal bone mineral density (aBMD) for femur and lumbar spine (L3-L5), and volumetric BMD measurements by CT for the midshaft and distal femur, femur neck, and fifth lumbar vertebra (L5). A total of 70,000 polymorphic single-nucleotide polymorphisms (SNPs) distributed throughout the genome were selected from genotypes obtained from the Affymetrix rat custom SNPs array for the HS rat population. These SNPs spanned the HS rat genome with a mean linkage disequilibrium coefficient between neighboring SNPs of 0.95. Haplotypes were estimated across the entire genome for each rat using a multipoint haplotype reconstruction method, which calculates the probability of descent for each genotyped locus from each of the eight founder HS strains. The haplotypes were tested for association with each bone density phenotype via a mixed model with covariate adjustment. We identified quantitative trait loci (QTLs) for BMD phenotypes on chromosomes 2, 9, 10, and 13 meeting a conservative genomewide empiric significance threshold (false discovery rate [FDR] = 5%; p < 3 × 10(-6)). Importantly, most QTLs were localized to very small genomic regions (1-3 megabases [Mb]), allowing us to identify a narrow set of potential candidate genes including both novel genes and genes previously shown to have roles in skeletal development and homeostasis

    Fine mapping of bone structure and strength QTLs in heterogeneous stock rat

    Get PDF
    We previously demonstrated that skeletal structure and strength phenotypes vary considerably in heterogeneous stock (HS) rats. These phenotypes were found to be strongly heritable, suggesting that the HS rat model represents a unique genetic resource for dissecting the complex genetic etiology underlying bone fragility. The purpose of this study was to identify and localize genes associated with bone structure and strength phenotypes using 1524 adult male and female HS rats between 17 to 20 weeks of age. Structure measures included femur length, neck width, head width; femur and lumbar spine (L3-5) areas obtained by DXA; and cross-sectional areas (CSA) at the midshaft, distal femur and femoral neck, and the 5th lumbar vertebra measured by CT. In addition, measures of strength of the whole femur and femoral neck were obtained. Approximately 70,000 polymorphic SNPs distributed throughout the rat genome were selected for genotyping, with a mean linkage disequilibrium coefficient between neighboring SNPs of 0.95. Haplotypes were estimated across the entire genome for each rat using a multipoint haplotype reconstruction method, which calculates the probability of descent at each locus from each of the 8 HS founder strains. The haplotypes were then tested for association with each structure and strength phenotype via a mixed model with covariate adjustment. We identified quantitative trait loci (QTLs) for structure phenotypes on chromosomes 3, 8, 10, 12, 17 and 20, and QTLs for strength phenotypes on chromosomes 5, 10 and 11 that met a conservative genome-wide empiric significance threshold (FDR=5%; P<3×10(-6)). Importantly, most QTLs were localized to very narrow genomic regions (as small as 0.3 Mb and up to 3 Mb), each harboring a small set of candidate genes, both novel and previously shown to have roles in skeletal development and homeostasis

    Design and Fabrication of a Low-Cost Drum Seeder for Paddy

    No full text
    Rice as a staple food crop, Bangladesh produces it extensively which raised the nation into the fourth-largest rice-grower in the world. Transplanting or direct seeding is a major task in rice cultivation where the manual transplanting method requires a huge labor cost which is beyond control in a peak season. Although mechanical rice transplanter becomes popularization the land preparation and seedling rising as a pre transplanting task is costly and labor-intensive. On the other hand, manual broadcasting and machine seeding direct method still exist due to the above method’s problem. Considering spacing accuracies for intercultural operation, drum seeders are an easy and convenient method for Bangladeshi farmers. This research was carried out to design and develop a drum seeder considering existing problems related to the spacing accuracies and cost optimization. It was tested for paddy seeds under laboratory setup.&nbsp; The developed drum seeder has double-rows with 20 cm row spacing which has a 2.4 m working width and weighing only 15 kg. The calibration test of the seeder reveals that the seed rate increased with the decrease in amount of seeds filled with hopper. Filling with one-fourth of drum’s full capacity results the optimum seed rate (86.33 kg/ha). On the other hand, non-acceptable seed rate was found (26.68 kg/ha) when the drum was filled of its full capacity. The performance of the seeder in the laboratory setup was satisfactory and the overall cost to fabricate the drum seeder was found BDT 2000 which is acceptable for farmers. An extension is needed to adopt the drum seeder to the Bangladeshi farmers

    The PDE4 Inhibitors Roflumilast and Rolipram Rescue ADO2 Osteoclast Resorption Dysfunction

    No full text
    Autosomal Dominant Osteopetrosis type II (ADO2) is a rare bone disease of impaired osteoclastic bone resorption caused by heterozygous missense mutations in the chloride channel 7 (CLCN7). Adenylate cyclase, which catalyzes the formation of cAMP, is critical for lysosomal acidification in osteoclasts. We found reduced cAMP levels in ADO2 osteoclasts compared to wild-type (WT) osteoclasts, leading us to examine whether regulating cAMP would improve ADO2 osteoclast activity. Although forskolin, a known activator of adenylate cyclase and cAMP levels, negatively affected osteoclast number, it led to an overall increase in ADO2 and WT osteoclast resorption activity in vitro. Next, we examined cAMP hydrolysis by the phosphodiesterase 4 (PDE4) proteins in ADO2 versus WT osteoclasts. QPCR analysis revealed higher expression of the three major PDE4 subtypes (4a, 4b, 4d) in ADO2 osteoclasts compared in WT, consistent with reduced cAMP levels in ADO2 osteoclasts. In addition, we found that the PDE4 antagonists, rolipram and roflumilast, stimulated ADO2 and WT osteoclast formation in a dose-dependent manner. Importantly, roflumilast and rolipram displayed a concentration-dependent increase in osteoclast resorption activity which was greater in ADO2 than WT osteoclasts. Moreover, treatment with roflumilast rescued cAMP levels in ADO2 OCLs. The key findings from our studies demonstrate that osteoclasts from ADO2 mice exhibit reduced cAMP levels and PDE4 inhibition rescues cAMP levels and ADO2 osteoclast activity dysfunction in vitro. The mechanism of action of PDE4 inhibitors and their ability to reduce the high bone mass of ADO2 mice in vivo are currently under investigation. Importantly, these studies advance the understanding of the mechanisms underlying the ADO2 osteoclast dysfunction which is critical for the development of therapeutic approaches to treat clinically affected ADO2 patients

    Chloroquine increases osteoclast activity in vitro but does not improve the osteopetrotic bone phenotype of ADO2 mice

    No full text
    Autosomal Dominant Osteopetrosis type II (ADO2) is a bone disease of impaired osteoclastic bone resorption that usually results from heterozygous missense mutations in the chloride channel 7 (CLCN7) gene. We created mouse models of ADO2 by introducing a knock-in (p.G213R) mutation in the Clcn7 gene, which is analogous to one of the common mutations (G215R) found in humans. The mutation leads to severe osteopetrosis and lethality in homozygous mice but produces substantial phenotypic variability in heterozygous mice on different genetic backgrounds that phenocopy the human disease of ADO2. ADO2 is an osteoclast-intrinsic disease, and lysosomal enzymes and proteins are critical for osteoclast activity. Chloroquine (CQ) is known to affect lysosomal trafficking, intracellular signaling and the lysosomal and vesicular pH, suggesting it might improve ADO2 osteoclast function. We tested this hypothesis in cell culture studies using osteoclasts derived from wild-type (WT or ADO2+/+) and ADO2 heterozygous (ADO2+/−) mice and found that CQ and its metabolite desethylchloroquine (DCQ), significantly increased ADO2+/− osteoclasts bone resorption activity in vitro, whereas bone resorption of ADO2+/+ osteoclasts was increased only by DCQ. In addition, we exploited our unique animal model of ADO2 on 129 background to identify the effect of CQ for the treatment of ADO2. Female ADO2 mice at 8 weeks of age were treated with 5 doses of CQ (1, 2.5, 5, 7.5 and 10 mg/kg BW/day) via drinking water for 6 months. Bone mineral density and bone micro-architecture were analyzed by longitudinal in-vivo DXA and micro-CT at baseline, 3 and 6 months. Serum bone biomarkers (CTX, TRAP and P1NP) were also analyzed at these time points. CQ treatment at the doses tested failed to produce any significant changes of aBMD, BMC (whole body, femur and spine) and trabecular BV/TV (distal femur) in ADO2 mice compared to the control group (water only). Further, levels of bone biomarkers were not significantly changed due to CQ treatment in these mice. Our findings indicate that while CQ increased osteoclast activity in vitro, it did not improve the osteopetrotic bone phenotypes in ADO2 heterozygous mice
    corecore