46 research outputs found

    The Connectivity of the Human Pulvinar: A Diffusion Tensor Imaging Tractography Study

    Get PDF
    Previous studies in nonhuman primates and cats have shown that the pulvinar receives input from various cortical and subcortical areas involved in vision. Although the contribution of the pulvinar to human vision remains to be established, anatomical tracer and electrophysiological animal studies on cortico-pulvinar circuits suggest an important role of this structure in visual spatial attention, visual integration, and higher-order visual processing. Because methodological constraints limit investigations of the human pulvinar's function, its role could, up to now, only be inferred from animal studies. In the present study, we used an innovative imaging technique, Diffusion Tensor Imaging (DTI) tractography, to determine cortical and subcortical connections of the human pulvinar. We were able to reconstruct pulvinar fiber tracts and compare variability across subjects in vivo. Here we demonstrate that the human pulvinar is interconnected with subcortical structures (superior colliculus, thalamus, and caudate nucleus) as well as with cortical regions (primary visual areas (area 17), secondary visual areas (area 18, 19), visual inferotemporal areas (area 20), posterior parietal association areas (area 7), frontal eye fields and prefrontal areas). These results are consistent with the connectivity reported in animal anatomical studies

    Driving Difficulties and Adaptive Strategies: The Perception of Individuals Having Sustained a Mild Traumatic Brain Injury

    Get PDF
    Introduction. After a mild traumatic brain injury (mTBI), individuals quickly resume driving. However, relatively little is known about the impact of mTBI on driving ability and, notably, on the perceived influence of postconcussive symptoms on driving. Hence, the objective of this study was to document the perception of driving abilities in individuals with mTBI. Method. Twenty-seven drivers with mTBI were interviewed to document their perception regarding their driving abilities. Both driving-related difficulties and compensatory strategies used to increase driving safety were documented. A mixed quantitative and qualitative analysis of the data was completed. Results. 93% of participants reported at least one difficulty perceived as having an impact on everyday activities. Most frequently named problems affecting driving were fatigue and reduced concentration. In addition, 74% of participants had adapted their driving or developed strategies to compensate for driving difficulties. Discussion/Conclusion. Postconcussive symptoms have repercussions on driving ability. However, people with mTBI tend to be aware of their difficulties and develop, over time, adaptive strategies. Preventive measures are thus warranted to increase health care professionals' awareness of the potential consequences of mTBI on driving ability and to promote guidelines for the safe resumption of driving after injury

    Repetitive Transcranial Magnetic Stimulation of Dorsolateral Prefrontal Cortex Affects Performance of the Wisconsin Card Sorting Task during Provision of Feedback

    Get PDF
    Early functional neuroimaging studies of tasks evaluating executive processes, such as the Wisconsin card sorting task (WCST), only assessed trials in blocks that may contain a large amount of different cognitive processes. More recently, we showed using event-related fMRI that the dorsolateral prefrontal cortex (DL-PFC) significantly increased activity during feedback but not matching periods of the WCST, consistent with its proposed role in the monitoring of information in working memory. Repetitive transcranial magnetic stimulation (rTMS) is a method that allows to disrupt processing within a given cortical region and to affect task performance for which this region is significantly solicited. Here we applied rTMS to test the hypothesis that the DL-PFC stimulation influences monitoring of working memory without interfering with other executive functions. We applied rTMS to the right DL-PFC and the vertex (control site) in different time points of the WCST. When rTMS was applied to the DL-PFC specifically during the period when subjects were receiving feedback regarding their previous response, WCST performance deteriorated, while rTMS did not affect performance during matching either when maintaining set or during set-shifting. This selective impairment of the DL-PFC is consistent with its proposed role in monitoring of events in working memory

    Role of advanced neuroimaging, fluid biomarkers and genetic testing in the assessment of sport-related concussion: a systematic review

    Get PDF
    Objective To conduct a systematic review of published literature on advanced neuroimaging, fluid biomarkers and genetic testing in the assessment of sport-related concussion (SRC). Data sources Computerised searches of Medline, PubMed, Cumulative Index to Nursing and Allied Health Literature (CINAHL), PsycINFO, Scopus and Cochrane Library from 1 January 2000 to 31 December 2016 were done. There were 3222 articles identified. Study selection In addition to medical subject heading terms, a study was included if (1) published in English, (2) represented original research, (3) involved human research, (4) pertained to SRC and (5) involved data from neuroimaging, fluid biomarkers or genetic testing collected within 6 months of injury. Ninety-eight studies qualified for review (76 neuroimaging, 16 biomarkers and 6 genetic testing). Data extraction Separate reviews were conducted for neuroimaging, biomarkers and genetic testing. A standardised data extraction tool was used to document study design, population, tests employed and key findings. Reviewers used a modified quality assessment of studies of diagnostic accuracy studies (QUADAS-2) tool to rate the risk of bias, and a modified Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system to rate the overall level of evidence for each search. Data synthesis Results from the three respective reviews are compiled in separate tables and an interpretive summary of the findings is provided. Conclusions Advanced neuroimaging, fluid biomarkers and genetic testing are important research tools, but require further validation to determine their ultimate clinical utility in the evaluation of SRC. Future research efforts should address current gaps that limit clinical translation. Ultimately, research on neurobiological and genetic aspects of SRC is predicted to have major translational significance to evidence-based approaches to clinical management of SRC, much like applied clinical research has had over the past 20 years

    Implicit Temporal Expectation Attenuates Auditory Attentional Blink

    Get PDF
    Attentional blink (AB) describes a phenomenon whereby correct identification of a first target impairs the processing of a second target (i.e., probe) nearby in time. Evidence suggests that explicit attention orienting in the time domain can attenuate the AB. Here, we used scalp-recorded, event-related potentials to examine whether auditory AB is also sensitive to implicit temporal attention orienting. Expectations were set up implicitly by varying the probability (i.e., 80% or 20%) that the probe would occur at the +2 or +8 position following target presentation. Participants showed a significant AB, which was reduced with the increased probe probability at the +2 position. The probe probability effect was paralleled by an increase in P3b amplitude elicited by the probe. The results suggest that implicit temporal attention orienting can facilitate short-term consolidation of the probe and attenuate auditory AB

    Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research

    Get PDF
    No abstract available

    Functional reorganization of population receptive fields in a hemispherectomy patient with blindsight

    No full text
    Blindsight refers to the ability of some patients with destruction of the primary visual cortex (V1) to respond to stimuli presented in their clinically blind visual field despite lack of visual awareness. Here we tested a rare and well-known patient with blindsight following hemispherectomy, DR, who has had the entire cortex in the right hemisphere removed, and in whom the right superior colliculus is the only post-chiasmatic visual structure remaining intact. Compared to more traditional cases of blindsight after damage confined to V1, the study of blindsight in hemispherectomy has offered the invaluable opportunity to examine directly two outstanding questions: the contribution of the intact hemisphere to visual processing without awareness, and the nature of plastic and compensatory changes in these remaining contralesional visual areas. Population receptive field (pRF) mapping was used to define retinotopic maps, delineate the boundaries between the visual areas, examine changes in the sizes of receptive field centres within each visual area, and their variability as a function of eccentricity. Aside from the dorsal visual areas showing blurred borders between V2d and V3d, not otherwise detected with perimetric mapping, the retinotopic maps of DR did not differ substantially from those of three matched healthy controls. Interestingly, those dorsal compartments showed a significant increase in the RF sizes toward values typical of higher-order processing cortices, while no differences were observed in the corresponding ventral visual areas. Findings showed that whereas receptive field sizes at foveal and parafoveal eccentricities (≤ 4°) were not measurably altered, the pRF size increased by ~ 270% at 4–6° of eccentricity, and the size difference reached ~ 300% between 8° and 10°. We interpret these findings to suggest that an increase in pRF sizes could be indicative of cerebral plasticity involving the retinotopic reorganization of the dorsal visual areas

    Functional reorganization of population receptive fields in a hemispherectomy patient with blindsight

    No full text
    Blindsight refers to the ability of some patients with destruction of the primary visual cortex (V1) to respond to stimuli presented in their clinically blind visual field despite lack of visual awareness. Here we tested a rare and well-known patient with blindsight following hemispherectomy, DR, who has had the entire cortex in the right hemisphere removed, and in whom the right superior colliculus is the only post-chiasmatic visual structure remaining intact. Compared to more traditional cases of blindsight after damage confined to V1, the study of blindsight in hemispherectomy has offered the invaluable opportunity to examine directly two outstanding questions: the contribution of the intact hemisphere to visual processing without awareness, and the nature of plastic and compensatory changes in these remaining contralesional visual areas. Population receptive field (pRF) mapping was used to define retinotopic maps, delineate the boundaries between the visual areas, examine changes in the sizes of receptive field centres within each visual area, and their variability as a function of eccentricity. Aside from the dorsal visual areas showing blurred borders between V2d and V3d, not otherwise detected with perimetric mapping, the retinotopic maps of DR did not differ substantially from those of three matched healthy controls. Interestingly, those dorsal compartments showed a significant increase in the RF sizes toward values typical of higher-order processing cortices, while no differences were observed in the corresponding ventral visual areas. Findings showed that whereas receptive field sizes at foveal and parafoveal eccentricities (≤ 4°) were not measurably altered, the pRF size increased by ~ 270% at 4-6° of eccentricity, and the size difference reached ~ 300% between 8° and 10°. We interpret these findings to suggest that an increase in pRF sizes could be indicative of cerebral plasticity involving the retinotopic reorganization of the dorsal visual areas

    Split-brain patients neglect left personal space during right-handed gestures

    Get PDF
    Since some patients with right hemisphere damage or with spontaneous callosal disconnection neglect the left half of space, it has been suggested that the left cerebral hemisphere predominantly attends to the right half of space. However, clinical investigations of patients having undergone surgical callosal section have not shown neglect when the hemispheres are tested separately. These observations question the validity of theoretical models that propose a left hemispheric specialisation for attending to the right half of space. The present study aims to investigate neglect and the use of space by either hand in gestural demonstrations in three split-brain patients as compared to five patients with partial callosotomy and 11 healthy subjects. Subjects were asked to demonstrate with precise gestures and without speaking the content of animated scenes with two moving objects. The results show that in the absence of primary perceptual or representational neglect, split-brain patients neglect left personal space in right-handed gestural demonstrations. Since this neglect of left personal space cannot be explained by directional or spatial akinesia, it is suggested that it originates at the conceptual level, where the spatial coordinates for right-hand gestures are planned. The present findings are at odds with the position that the separate left hemisphere possesses adequate mechanisms for acting in both halves of space and neglect results from right hemisphere suppression of this potential. Rather, the results provide support for theoretical models that consider the left hemisphere as specialised for processing the right half of space during the execution of descriptive gestures
    corecore