43 research outputs found

    Identifying distant homologous viral sequences in metagenomes using protein structure information

    Get PDF
    International audienceIt is estimated that marine viruses daily kill about 20% of the ocean biomass. Identifying them in water samples is thus a biological issue of great importance. The metagenomic approach for virus identication is a challenging task since their sequences carry a lot of mutations making them hardly possible to find by standard homology searches. The PEPS VAG project aims at establishing a novel methodology that uses structures of proteins as extra-information in order to annotate metagenomes without relying on homology of sequences. In the context of the first experiments made on the metagenome of station 23 of the TARA Ocean Project, we use the structures of capsid protein to infer the sequence signature of their fold, in order to find them in the metagenome. We present here the methodology, the first experiments and the on-going improvements

    Ploidy-dependent changes in the epigenome of symbiotic cells correlate with specific patterns of gene expression

    Get PDF
    The formation of symbiotic nodule cells in Medicago truncatula is driven by successive endoreduplication cycles and transcriptional reprogramming in different temporal waves including the activation of more than 600 cysteine-rich NCR genes expressed only in nodules. We show here that the transcriptional waves correlate with growing ploidy levels and have investigated how the epigenome changes during endoreduplication cycles. Differential DNA methylation was found in only a small subset of symbiotic nodule-specific genes, including more than half of the NCR genes, whereas in most genes DNA methylation was unaffected by the ploidy levels and was independent of the genes' active or repressed state. On the other hand, expression of nodule-specific genes correlated with ploidy-dependent opening of the chromatin as well as, in a subset of tested genes, with reduced H3K27me3 levels combined with enhanced H3K9ac levels. Our results suggest that endoreduplication-dependent epigenetic changes contribute to transcriptional reprogramming in the differentiation of symbiotic cells

    Insights into the role of DNA methylation in diatoms by genome-wide profiling in Phaeodactylum tricornutum

    Get PDF
    DNA cytosine methylation is a widely conserved epigenetic mark in eukaryotes that appears to have critical roles in the regulation of genome structure and transcription. Genome-wide methylation maps have so far only been established from the supergroups Archaeplastida and Unikont. Here we report the first whole-genome methylome from a stramenopile, the marine model diatom Phaeodactylum tricornutum. Around 6% of the genome is intermittently methylated in a mosaic pattern. We find extensive methylation in transposable elements. We also detect methylation in over 320 genes. Extensive gene methylation correlates strongly with transcriptional silencing and differential expression under specific conditions. By contrast, we find that genes with partial methylation tend to be constitutively expressed. These patterns contrast with those found previously in other eukaryotes. By going beyond plants, animals and fungi, this stramenopile methylome adds significantly to our understanding of the evolution of DNA methylation in eukaryotes.Fil: Veluchamy, Alaguraj. Institut de Biologie de l'École Normale SupĂ©rieure; FranciaFil: Lin, Xin. Institut de Biologie de l'École Normale SupĂ©rieure; Francia. Xiamen University; ChinaFil: Maumus, Florian.Fil: Rivarola, Maximo Lisandro.Fil: Bhavsar, Jaysheel.Fil: Creasy, Todd.Fil: O'Brien, Kimberly.Fil: Sengamalay, Naomi A..Fil: Tallon, Luke J..Fil: Smith, Andrew D..Fil: Rayko, Edda.Fil: Ahmed, Ikhlak.Fil: Crom, StĂ©phane Le.Fil: Farrant, Gregory K..Fil: Sgro, Jean-Yves.Fil: Olson, Sue A..Fil: Bondurant, Sandra Splinter.Fil: Allen, Andrew.Fil: Rabinowicz, Pablo D..Fil: Sussman, Michael R..Fil: Bowler, Chris.Fil: Tirichine, LeĂŻla

    GCN5 modulates salicylic acid homeostasis by regulating H3K14ac levels at the 5Êč and 3Êč ends of its target genes

    Get PDF
    The modification of histones by acetyl groups has a key role in the regulation of chromatin structure and transcription. The Arabidopsis thaliana histone acetyltransferase GCN5 regulates histone modifications as part of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) transcriptional coactivator complex. GCN5 was previously shown to acetylate lysine 14 of histone 3 (H3K14ac) in the promoter regions of its target genes even though GCN5 binding did not systematically correlate with gene activation. Here, we explored the mechanism through which GCN5 controls transcription. First, we fine-mapped its GCN5 binding sites genome-wide and then used several global methodologies (ATAC-seq, ChIP-seq and RNA-seq) to assess the effect of GCN5 loss-of-function on the expression and epigenetic regulation of its target genes. These analyses provided evidence that GCN5 has a dual role in the regulation of H3K14ac levels in their 5â€Č and 3â€Č ends of its target genes. While the gcn5 mutation led to a genome-wide decrease of H3K14ac in the 5â€Č end of the GCN5 down-regulated targets, it also led to an increase of H3K14ac in the 3â€Č ends of GCN5 up-regulated targets. Furthermore, genome-wide changes in H3K14ac levels in the gcn5 mutant correlated with changes in H3K9ac at both 5â€Č and 3â€Č ends, providing evidence for a molecular link between the depositions of these two histone modifications. To understand the biological relevance of these regulations, we showed that GCN5 participates in the responses to biotic stress by repressing salicylic acid (SA) accumulation and SA-mediated immunity, highlighting the role of this protein in the regulation of the crosstalk between diverse developmental and stress-responsive physiological programs. Hence, our results demonstrate that GCN5, through the modulation of H3K14ac levels on its targets, controls the balance between biotic and abiotic stress responses and is a master regulator of plant-environmental interactions

    Evolutionary genomics of a cold-adapted diatom: Fragilariopsis cylindrus

    Get PDF
    The Southern Ocean houses a diverse and productive community of organisms1, 2. Unicellular eukaryotic diatoms are the main primary producers in this environment, where photosynthesis is limited by low concentrations of dissolved iron and large seasonal fluctuations in light, temperature and the extent of sea ice3, 4, 5, 6, 7. How diatoms have adapted to this extreme environment is largely unknown. Here we present insights into the genome evolution of a cold-adapted diatom from the Southern Ocean, Fragilariopsis cylindrus8, 9, based on a comparison with temperate diatoms. We find that approximately 24.7 per cent of the diploid F. cylindrus genome consists of genetic loci with alleles that are highly divergent (15.1 megabases of the total genome size of 61.1 megabases). These divergent alleles were differentially expressed across environmental conditions, including darkness, low iron, freezing, elevated temperature and increased CO2. Alleles with the largest ratio of non-synonymous to synonymous nucleotide substitutions also show the most pronounced condition-dependent expression, suggesting a correlation between diversifying selection and allelic differentiation. Divergent alleles may be involved in adaptation to environmental fluctuations in the Southern Ocean

    Community-Level Responses to Iron Availability in Open Ocean Plankton Ecosystems

    Get PDF
    Predicting responses of plankton to variations in essential nutrients is hampered by limited in situ measurements, a poor understanding of community composition, and the lack of reference gene catalogs for key taxa. Iron is a key driver of plankton dynamics and, therefore, of global biogeochemical cycles and climate. To assess the impact of iron availability on plankton communities, we explored the comprehensive bio-oceanographic and bio-omics data sets from Tara Oceans in the context of the iron products from two state-of-the-art global scale biogeochemical models. We obtained novel information about adaptation and acclimation toward iron in a range of phytoplankton, including picocyanobacteria and diatoms, and identified whole subcommunities covarying with iron. Many of the observed global patterns were recapitulated in the Marquesas archipelago, where frequent plankton blooms are believed to be caused by natural iron fertilization, although they are not captured in large-scale biogeochemical models. This work provides a proof of concept that integrative analyses, spanning from genes to ecosystems and viruses to zooplankton, can disentangle the complexity of plankton communities and can lead to more accurate formulations of resource bioavailability in biogeochemical models, thus improving our understanding of plankton resilience in a changing environment

    PhaeoEpiView: an epigenome browser of the newly assembled genome of the model diatom Phaeodactylum tricornutum

    No full text
    Abstract Recent advances in DNA sequencing technologies particularly long-read sequencing, greatly improved genomes assembly. However, this has created discrepancies between published annotations and epigenome tracks, which have not been updated to keep pace with the new assemblies. Here, we used the latest improved telomere-to-telomere assembly of the model pennate diatom Phaeodactylum tricornutum to lift over the gene models from Phatr3, a previously annotated reference genome. We used the lifted genes annotation and newly published transposable elements to map the epigenome landscape, namely DNA methylation and post-translational modifications of histones. This provides the community with PhaeoEpiView, a browser that allows the visualization of epigenome data and transcripts on an updated and contiguous reference genome, to better understand the biological significance of the mapped data. We updated previously published histone marks with a more accurate peak calling using mono instead of poly(clonal) antibodies and deeper sequencing. PhaeoEpiView ( https://PhaeoEpiView.univ-nantes.fr ) will be continuously updated with the newly published epigenomic data, making it the largest and richest epigenome browser of any stramenopile. In the upcoming era of molecular environmental studies, where epigenetics plays a significant role, we anticipate that PhaeoEpiView will become a widely used tool
    corecore