34 research outputs found

    Lumbar Spine Discs Labeling using Axial View MRI Based on the Pixels Coordinate and Gray Level Features

    Get PDF
    Disc herniation is a major reason for lower back pain (LBP), it cost the United Kingdom (UK) government over £1.3 million per day. In fact a very high proportion of the UK population will complain from their back pain. Fur-thermore, Magnetic Resonance Imaging (MRI) is one of the main diagnosing procedure for LBP. Automatic disc labeling in the MRI to detect the herniation area will reduce the required time to issue the report from the radiologist. We present a method for automatic labeling for the lumbar spine disc area using the axial view MRI based on the pixels coordinate and gray level features. We use a clinical MRI for the training and testing. Moreover, the accuracy and the recon-structed images was the main indicator for our result. The highest achieved ac-curacy was 98.9 and 91.1 for Weighted KNN and Fine Gaussian SVM respec-tively

    Lumbar spine discs labeling using axial view MRI based on the pixels coordinate and gray level features

    Get PDF
    © Springer International Publishing AG 2017. Disc herniation is a major reason for lower back pain (LBP), a health issue that affects a very high proportion of the UK population and is costing the UK government over £1.3 million per day in health care cost. Currently, the process to diagnose the cause of LBP involves examining a large number of Magnetic Resonance Images (MRI) but this process is both expensive in terms time and effort. Automatic labeling of lumbar disc pixels in the MRI to detect the herniation area will reduce the time to diagnose and detect the cause of LBP by the physicians. In this paper, we present a method for automatic labeling of the lumbar spine disc pixels in axial view MRI using pixels locations and gray level as features. Clinical MRIs are used for the training and testing of the method. The pixel classification accuracy and the quality of the reconstructed disc images are used as the main performance indicators for our method. Our experiments show that high level of classification accuracy of 91.1% and 98.9% can be achieved using Weighted KNN and Fine Gaussian SVM classifiers respectively

    Segmentation of Lumbar Spine MRI Images for Stenosis Detection using Patch-based Pixel Classification Neural Network

    Get PDF
    This paper addresses the central problem of automatic segmentation of lumbar spine Magnetic Resonance Imaging (MRI) images to delineate boundaries between the anterior arch and posterior arch of the lumbar spine. This is necessary to efficiently detect the occurrence of lumbar spinal stenosis as a leading cause of Chronic Lower Back Pain. A patch-based classification neural network consisting of convolutional and fully connected layers is used to classify and label pixels in MRI images. The classifier is trained using overlapping patches of size 25x25 pixels taken from a set of cropped axial-view T2-weighted MRI images of the bottom three intervertebral discs. A set of experiment is conducted to measure the performance of the classification network in segmenting the images when either all or each of the discs separately is used. Using pixel accuracy, mean accuracy, mean Intersection over Union (IoU), and frequency weighted IoU as the performance metrics we have shown that our approach produces better segmentation results than eleven other pixel classifiers. Furthermore, our experiment result also indicates that our approach produces more accurate delineation of all important boundaries and making it best suited for the subsequent stage of lumbar spinal stenosis detection

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Boundary Delineation of MRI Images for Lumbar Spinal Stenosis Detection through Semantic Segmentation using Deep Neural Networks

    No full text
    We propose a methodology to aid clinicians in performing lumbar spinal stenosis detection through semantic segmentation and delineation of Magnetic Resonance Imaging (MRI) scans of lumbar spine using deep learning. Our dataset contains MRI studies of 515 patients with symptomatic back pains. Each study is annotated by expert radiologists with notes regarding the observed characteristics and condition of the lumbar spine. We have developed a ground truth dataset, containing image labels of four important regions in the lumbar spine, to be used as training and test images to develop classification models for segmentation. We developed two novel metrics, namely confidence and consistency, to assess the quality of the ground truth dataset through a derivation of the Jaccard Index. We experimented with semantic segmentation of our dataset using SegNet. Our evaluation of the segmentation and the delineation results show that our proposed methodology produces very good performance as measured by several contour-based and region-based metrics. Additionally, using the Cohen’s kappa and frequency-weighted confidence metrics, we can show that 1) the model’s performance is within the range of the worst and the best manual labelling results, and 2) the ground-truth dataset has an excellent inter-rater agreement score. We also presented two representative delineation results of the worst and best segmentation based on their BF-score to show visually how accurate and suitable the results are for computer-aided-diagnosis purposes

    Lumbar spine discs labeling using axial view MRI based on the pixels coordinate and gray level features

    No full text
    © Springer International Publishing AG 2017. Disc herniation is a major reason for lower back pain (LBP), a health issue that affects a very high proportion of the UK population and is costing the UK government over £1.3 million per day in health care cost. Currently, the process to diagnose the cause of LBP involves examining a large number of Magnetic Resonance Images (MRI) but this process is both expensive in terms time and effort. Automatic labeling of lumbar disc pixels in the MRI to detect the herniation area will reduce the time to diagnose and detect the cause of LBP by the physicians. In this paper, we present a method for automatic labeling of the lumbar spine disc pixels in axial view MRI using pixels locations and gray level as features. Clinical MRIs are used for the training and testing of the method. The pixel classification accuracy and the quality of the reconstructed disc images are used as the main performance indicators for our method. Our experiments show that high level of classification accuracy of 91.1% and 98.9% can be achieved using Weighted KNN and Fine Gaussian SVM classifiers respectively

    Lumbar spine discs labeling using axial view MRI based on the pixels coordinate and gray level features

    No full text
    © Springer International Publishing AG 2017. Disc herniation is a major reason for lower back pain (LBP), a health issue that affects a very high proportion of the UK population and is costing the UK government over £1.3 million per day in health care cost. Currently, the process to diagnose the cause of LBP involves examining a large number of Magnetic Resonance Images (MRI) but this process is both expensive in terms time and effort. Automatic labeling of lumbar disc pixels in the MRI to detect the herniation area will reduce the time to diagnose and detect the cause of LBP by the physicians. In this paper, we present a method for automatic labeling of the lumbar spine disc pixels in axial view MRI using pixels locations and gray level as features. Clinical MRIs are used for the training and testing of the method. The pixel classification accuracy and the quality of the reconstructed disc images are used as the main performance indicators for our method. Our experiments show that high level of classification accuracy of 91.1% and 98.9% can be achieved using Weighted KNN and Fine Gaussian SVM classifiers respectively

    Lumbar spine discs labeling using axial view MRI based on the pixels coordinate and gray level features

    Get PDF
    © Springer International Publishing AG 2017. Disc herniation is a major reason for lower back pain (LBP), a health issue that affects a very high proportion of the UK population and is costing the UK government over £1.3 million per day in health care cost. Currently, the process to diagnose the cause of LBP involves examining a large number of Magnetic Resonance Images (MRI) but this process is both expensive in terms time and effort. Automatic labeling of lumbar disc pixels in the MRI to detect the herniation area will reduce the time to diagnose and detect the cause of LBP by the physicians. In this paper, we present a method for automatic labeling of the lumbar spine disc pixels in axial view MRI using pixels locations and gray level as features. Clinical MRIs are used for the training and testing of the method. The pixel classification accuracy and the quality of the reconstructed disc images are used as the main performance indicators for our method. Our experiments show that high level of classification accuracy of 91.1% and 98.9% can be achieved using Weighted KNN and Fine Gaussian SVM classifiers respectively
    corecore