8 research outputs found

    Debilitating floods in the Sahel are becoming frequent

    Get PDF
    Despite the long-lasting and widespread drought in the Sahel, flood events did punctuate in the past. The concern about floods remains dwarf on the international research and policy agenda compared to droughts. In this paper, we elucidate that floods in the Sahel are now becoming more frequent, widespread, and more devastating. We analyzed gridded daily rainfall data over the period 1981–2020, used photographs and satellite images to depict flood areas and threats, compiled and studied flood-related statistics over the past two decades, and supported the results with peer-reviewed literature. Our analysis revealed that the timing of the maximum daily rainfall occurs from the last week of July to mid-August in the Eastern Sahel, but from the last week of July to the end of August in the Western Sahel. In 2019 and 2020, flash and riverine floods took their toll in Sudan and elsewhere in the region in terms of the number of affected people, direct deaths, destroyed and damaged houses and croplands, contaminated water resources, and disease outbreaks and deaths. Changes in rainfall intensity, human interventions in the physical environment, and poor urban planning play a major role in driving catastrophic floods. Emphasis should be put on understanding flood causes and impacts on vulnerable societies, controlling water-borne diseases, and recognizing the importance of compiling relevant and reliable flood information. Extreme rainfall in this dry region could be an asset for attenuating the regional water scarcity status if well harvested and managed. We hope this paper will induce the hydroclimate scholars to carry out more flood studies for the Sahel. It is only then encumbered meaningful opportunities for flood risk management can start to unveil

    Observing Flash Flood in Arid and Semi-Arid Regions from Space:Wadi Watier in Sinai of Egypt as a Case Study

    No full text
    The Second International Symposium on Flash Floods in Wadi Systems: 25-27 October 2016. Technische Universität Berlin, Campus El Gouna, Egypt

    Floodwater Harvesting to Manage Irrigation Water and Mesquite Encroachment in a Data‐Sparse River Basin: An Eco‐Hydrological Approach

    No full text
    This investigation attempts to understand the eco‐hydrology of, and accordingly suggest an option to manage floodwater for agriculture in, the understudied and data‐sparse ephemeral Baraka River Basin within the hyper‐arid region of Sudan. Reference is made to the major feature of the basin, that is, the Toker Delta spate irrigation scheme. A point‐to‐pixel comparison of gridded and ground‐based data sets is performed to enhance the estimates of rainfall. Analysis of remotely sensed land use/cover data is performed. The results show a significant reduction of the grassland and barren areas explained by a significant expansion of the cropland and open shrubland (invasive mesquite trees) areas in the delta. The cotton sown area is highly dependent on the flooded area and the discharge volume in the delta. However, the area of this major crop has declined since the early 1990s in favour of cultivation of more profitable food crops. Expansion of mesquite in the delta is problematic, taking hold under increased floodwater, and can only be manged by clearance to provide crop cultivation area. There is a great potential for floodwater harvesting during the rainfall season (June to September). A total seasonal runoff volume of around 4.6 and 10.8 billion cubic metres is estimated at 90 and 50% probabilities of exceedance (reliabilities), respectively. Rather than leaving the runoff generated from rainfall events to pass to the Red Sea or be consumed by mesquite trees, a location for runoff harvesting structure in a highly suitable area is proposed. Such a structure will support any policy shifts towards planning and managing the basin water resources for use in irrigating the agricultural scheme

    Drought versus flood: What matters more to the performance of Sahel farming systems?

    No full text
    AbstractRecent climate change has brought new patterns of extreme events in terms of both drought and heavy rainfall to the drought‐prone African Sahel. The effects of these recent extreme events on the performance of the Sahel farming systems are still weakly investigated. This study aims at assessing effects of droughts versus floods on crop yield levels and losses, focusing on the so‐called recovery period, particularly 2001–2020. A newly developed productivity‐drought condition index (PDCI) is utilized to assess agricultural productivity as related to drought or flood in a highly vulnerable region, that is, the Sudanese Sahel. Four farming systems, namely traditional rainfed, mechanized rainfed, gravity irrigated and spate irrigated systems, with sorghum and millet as staple food crops, are considered. The PDCI is defined as a function of the integrated normalized difference vegetation index (iNDVI) over the growing season. To address temporal and spatial variabilities, scaling of the PDCI is done in two dimensions: space and time. Crop statistics are used to derive yield losses. Our results show that both drought and flood episodes (seven and six episodes, respectively) can be captured using the PDCI. Drought remains the most relevant risk to Sahel's crop productivity. Some recent large‐scale floods led to yield loss. However, floods cause smaller risks to agricultural productivity compared to droughts. Floods may even result in enhanced crop yields. Based upon scaling in the time or space domain, ranking the severity of drought impacts on crop yield for individual years from 2001 to 2020 reveals least to slightly different results. Vulnerability to drought depends on the crop type and farming system. Drought effect on crop yield from the irrigated sector is clear on individual years but not as a general statistical relationship. The parameter ‘percentage area under drought’ explains around one‐third of the variation in the rainfed crop yield. The spate irrigation scheme, the gravity irrigated system and the rainfed farmlands experienced respectively 87%, 57% and 46% of area under drought on average. Irrigated systems produce much higher crop yields than rainfed systems. The mechanized system is more drought‐vulnerable than the traditional system. These results call for identifying agricultural management pathways that recognize the combined implications of both hydrological extremes for the region's food security.A newly devised productivity‐drought condition index (PDCI) based on integrated normalized difference vegetation index (iNDVI) data is used to capture the performance of different Sahel farming systems. The performance is evaluated spatially and temporally in a comparative study of effects of droughts versus floods on crop yield levels and losses during 2001–2020. Our research shows that: Crop productivity of all farming systems is severely affected by drought; Flood events can also lead to a decline in productivity, but usually to a much lesser extent; The vulnerability to droughts and floods depends upon the farming system and crop type. Our analysis shows that the farming systems in the Sudanese Sahel have not reverted to conditions that could be described as a Sahel recovery. This study calls for agricultural management decisions, which are specific for the different farming systems, in response to climate variability. Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659https://doi.org/10.1594/PANGAEA.921846https://edcintl.cr.usgs.gov/downloads/sciweb1/shared/fews/web/africa/east/dekadal/emodis/ndvi_c6/https://earlywarning.usgs.gov/fews/datadownloads/East 20Africa/eMODIS 20NDVI 20C

    Debilitating floods in the Sahel are becoming frequent

    Get PDF
    Despite the long-lasting and widespread drought in the Sahel, flood events did punctuate in the past. The concern about floods remains dwarf on the international research and policy agenda compared to droughts. In this paper, we elucidate that floods in the Sahel are now becoming more frequent, widespread, and more devastating. We analyzed gridded daily rainfall data over the period 1981-2020, used photographs and satellite images to depict flood areas and threats, compiled and studied flood-related statistics over the past two decades, and supported the results with peer-reviewed literature. Our analysis revealed that the timing of the maximum daily rainfall occurs from the last week of July to mid-August in the Eastern Sahel, but from the last week of July to the end of August in the Western Sahel. In 2019 and 2020, flash and riverine floods took their toll in Sudan and elsewhere in the region in terms of the number of affected people, direct deaths, destroyed and damaged houses and croplands, contaminated water resources, and disease outbreaks and deaths. Changes in rainfall intensity, human interventions in the physical environment, and poor urban planning play a major role in driving catastrophic floods. Emphasis should be put on understanding flood causes and impacts on vulnerable societies, controlling water-borne diseases, and recognizing the importance of compiling relevant and reliable flood information. Extreme rainfall in this dry region could be an asset for attenuating the regional water scarcity status if well harvested and managed. We hope this paper will induce the hydroclimate scholars to carry out more flood studies for the Sahel. It is only then encumbered meaningful opportunities for flood risk management can start to unveil

    Pancreatic surgery outcomes: multicentre prospective snapshot study in 67 countries

    No full text
    Background: Pancreatic surgery remains associated with high morbidity rates. Although postoperative mortality appears to have improved with specialization, the outcomes reported in the literature reflect the activity of highly specialized centres. The aim of this study was to evaluate the outcomes following pancreatic surgery worldwide.Methods: This was an international, prospective, multicentre, cross-sectional snapshot study of consecutive patients undergoing pancreatic operations worldwide in a 3-month interval in 2021. The primary outcome was postoperative mortality within 90 days of surgery. Multivariable logistic regression was used to explore relationships with Human Development Index (HDI) and other parameters.Results: A total of 4223 patients from 67 countries were analysed. A complication of any severity was detected in 68.7 percent of patients (2901 of 4223). Major complication rates (Clavien-Dindo grade at least IIIa) were 24, 18, and 27 percent, and mortality rates were 10, 5, and 5 per cent in low-to-middle-, high-, and very high-HDI countries respectively. The 90-day postoperative mortality rate was 5.4 per cent (229 of 4223) overall, but was significantly higher in the low-to-middle-HDI group (adjusted OR 2.88, 95 per cent c.i. 1.80 to 4.48). The overall failure-to-rescue rate was 21 percent; however, it was 41 per cent in low-to-middle-compared with 19 per cent in very high-HDI countries.Conclusion: Excess mortality in low-to-middle-HDI countries could be attributable to failure to rescue of patients from severe complications. The authors call for a collaborative response from international and regional associations of pancreatic surgeons to address management related to death from postoperative complications to tackle the global disparities in the outcomes of pancreatic surgery (NCT04652271; ISRCTN95140761)
    corecore