158 research outputs found
Topp–Leone Family of Distributions: Some Properties and Application
In this paper we have proposed a new family of distributions; the Topp–Leone family of distributions. We have given general expression for density and distribution function of the new family. Expression for moments and hazard rate has also been given. We have also given an example of the proposed family
Survey of millimeter-wave propagation measurements and models in indoor environments
The millimeter-wave (mmWave) is expected to deliver a huge bandwidth to address the future demands for higher data rate transmissions. However, one of the major challenges in the mmWave band is the increase in signal loss as the operating frequency increases. This has attracted several research interests both from academia and the industry for indoor and outdoor mmWave operations. This paper focuses on the works that have been carried out in the study of the mmWave channel measurement in indoor environments. A survey of the measurement techniques, prominent path loss models, analysis of path loss and delay spread for mmWave in different indoor environments is presented. This covers the mmWave frequencies from 28 GHz to 100 GHz that have been considered in the last two decades. In addition, the possible future trends for the mmWave indoor propagation studies and measurements have been discussed. These include the critical indoor environment, the roles of artificial intelligence, channel characterization for indoor devices, reconfigurable intelligent surfaces, and mmWave for 6G systems. This survey can help engineers and researchers to plan, design, and optimize reliable 5G wireless indoor networks. It will also motivate the researchers and engineering communities towards finding a better outcome in the future trends of the mmWave indoor wireless network for 6G systems and beyond
Performance of full-duplex wireless back-haul link under rain effects using e-band 73 GHz and 83 GHz in tropical area
This paper presents rain attenuation effects on the performance of the full-duplex link in a tropical region based on one-year measurement data at 73.5- and 83.5-GHz E-band for distances of 1.8 km (longer links) and 300 m (shorter links). The measured rain attenuations were analyzed for four links, and the throughput degradation due to rain was investigated. The findings from this work showed that the rain attenuation for both frequencies (73.5 and 83.5 GHz) of E-band links are the same. The rain rates above 108 and 193 mm/h caused an outage for the longer and shorter links, respectively. The 73.5 and 83.5 GHz bands can support the full-duplex wireless back-haul link under rainy conditions with outage probability of 2.9 × 10-4 and 6 × 10-5 for the longer and shorter links, respectively. This work also finds that the heavy rain with rain rates above 80 mm/h for long link and 110 mm/h for short link causes about 94% and 0.90% degradation of maximum throughput. The application of these findings would help improve the architecture and service of full-duplex wireless E-band links that are established at other sites and in other tropical areas
Recent Advances in Nanomaterial-Based Biosensor for Periodontitis Detection
Periodontitis, a chronic inflammatory condition caused by bacteria, often causes gradual destruction of the components that support teeth, such as the alveolar bone, cementum, periodontal ligament, and gingiva. This ultimately results in teeth becoming loose and eventually falling out. Timely identification has a crucial role in preventing and controlling its progression. Clinical measures are used to diagnose periodontitis. However, now, there is a hunt for alternative diagnostic and monitoring methods due to the progress of technology. Various biomarkers have been assessed using multiple bodily fluids as sample sources. Furthermore, conventional periodontal categorization factors do not provide significant insights into the present disease activity, severity and amount of tissue damage, future development, and responsiveness to treatment. In recent times, there has been a growing utilization of nanoparticle (NP)-based detection strategies to create quick and efficient detection assays. Every single one of these platforms leverages the distinct characteristics of NPs to identify periodontitis. Plasmonic NPs include metal NPs, quantum dots (QDs), carbon base NPs, and nanozymes, exceptionally potent light absorbers and scatterers. These find application in labeling, surface-enhanced spectroscopy, and color-changing sensors. Fluorescent NPs function as photostable and sensitive instruments capable of labeling various biological targets. This article presents a comprehensive summary of the latest developments in the effective utilization of various NPs to detect periodontitis
Perspectives on a ‘Sit Less, Move More’ Intervention in Australian Emergency Call Centres
Background: Prolonged sitting is associated with increased risk of chronic diseases. Workplace programs that aim to reduce sitting time (sit less) and increase physical activity (move more) have targeted desk-based workers in corporate and university settings with promising results. However, little is known about 'move more, sit less' programs for workers in other types of jobs and industries, such as shift workers. This formative research examines the perceptions of a 'sit less, move more' program in an Australian Emergency Call Centre that operates 24 hours per day, 7 days per week. Methods: Participants were employees (N = 39, 72% female, 50% aged 36-55 years) recruited from Emergency Services control centres located in New South Wales, Australia. The 'sit less, move more' intervention, consisting of emails, posters and timer lights, was co-designed with the management team and tailored to the control centre environment and work practices, which already included electronic height-adjustable sit-stand workstations for all call centre staff. Participants reported their perceptions and experiences of the intervention in a self-report online questionnaire, and directly to the research team during regular site visits. Questionnaire topics included barriers and facilitators to standing while working, mental wellbeing, effects on work performance, and workplace satisfaction. Field notes and open-ended response data were analysed in an iterative process during and after data collection to identify the main themes. Results: Whilst participants already had sit-stand workstations, use of the desks in the standing position varied and sometimes were contrary to expectations (e.g, less tired standing than sitting; standing when experiencing high call stress). Participants emphasised the "challenging" and "unrelenting" nature of their work. They reported sleep issues ("always tired"), work stress ("non-stop demands"), and feeling mentally and physically drained due to shift work and length of shifts. Overall, participants liked the initiative but acknowledged that their predominantly sitting habits were entrenched and work demands took precedence. Conclusions: This study demonstrates the low acceptability of a 'sit less, move more' program in shift workers in high stress environments like emergency call centres. Work demands take priority and other health concerns, like poor sleep and high stress, may be more salient than the need to sit less and move more during work shifts
FASTKIT: A Mobile Cable-Driven Parallel Robot for Logistics
International audienceThe subject of this paper is about the design, modeling, control and performance evaluation of a low cost and versatile robotic solution for logistics. The robot under study, named FASTKIT, is obtained from a combination of mobile robots and a Cable-Driven Parallel Robot (CDPR). FASTKIT addresses an industrial need for fast picking and kitting operations in existing storage facilities while being easy to install, keeping existing infrastructures and covering large areas. The FASTKIT prototype consists of two mobile bases that carry the exit points of the CDPR. The system can navigate autonomously to the area of interest. Once the desired position is attained, the system deploys the CDPR in such a way that its workspace corresponds to the current task specification. The system calculates the required mobile base position from the desired workspace and ensures the controllability of the platform during the deployment. Once the system is successfully deployed, the set of stabilizers are used to ensure the prototype structural stability. Then the prototype gripper is moved accurately by the CDPR at high velocity over a large area by controlling the cable tension
Solar pond powered liquid desiccant evaporative cooling
Liquid desiccant cooling systems (LDCS) are energy efficient means of providing cooling, especially when powered by low-grade thermal sources. In this paper, the underlying principles of operation of desiccant cooling systems are examined, and the main components (dehumidifier, evaporative cooler and regenerator) of the LDCS are reviewed. The evaporative cooler can take the form of direct, indirect or semi-indirect. Relative to the direct type, the indirect type is generally less effective. Nonetheless, a certain variant of the indirect type - namely dew-point evaporative cooler - is found to be the most effective amongst all. The dehumidifier and the regenerator can be of the same type of equipment: packed tower and falling film are popular choices, especially when fitted with an internal heat exchanger. The energy requirement of the regenerator can be supplied from solar thermal collectors, of which a solar pond is an interesting option especially when a large scale or storage capability is desired
Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021
Background Diabetes is one of the leading causes of death and disability worldwide, and affects people regardless of country, age group, or sex. Using the most recent evidentiary and analytical framework from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), we produced location-specific, age-specific, and sex-specific estimates of diabetes prevalence and burden from 1990 to 2021, the proportion of type 1 and type 2 diabetes in 2021, the proportion of the type 2 diabetes burden attributable to selected risk factors, and projections of diabetes prevalence through 2050. Methods Estimates of diabetes prevalence and burden were computed in 204 countries and territories, across 25 age
groups, for males and females separately and combined; these estimates comprised lost years of healthy life, measured in disability-adjusted life-years (DALYs; defined as the sum of years of life lost [YLLs] and years lived with disability [YLDs]). We used the Cause of Death Ensemble model (CODEm) approach to estimate deaths due to diabetes, incorporating 25 666 location-years of data from vital registration and verbal autopsy reports in separate total (including both type 1 and type 2 diabetes) and type-specific models. Other forms of diabetes, including gestational and monogenic diabetes, were not explicitly modelled. Total and type 1 diabetes prevalence was estimated by use of a Bayesian meta-regression modelling tool, DisMod-MR 2.1, to analyse 1527 location-years of data from the scientific literature, survey microdata, and insurance claims; type 2 diabetes estimates were computed by subtracting type 1 diabetes from total estimates. Mortality and prevalence estimates, along with standard life expectancy and disability weights, were used to calculate YLLs, YLDs, and DALYs. When appropriate, we extrapolated estimates to a hypothetical population with a standardised age structure to allow comparison in populations with different age structures. We used the comparative risk assessment framework to estimate the risk-attributable type 2 diabetes burden for 16 risk factors falling under risk categories including environmental and occupational factors, tobacco use, high alcohol use, high body-mass index (BMI), dietary factors, and low physical activity. Using a regression framework, we forecast type 1 and type 2 diabetes prevalence through 2050 with Socio-demographic Index (SDI) and high BMI as predictors, respectively.
Findings In 2021, there were 529 million (95% uncertainty interval [UI] 500–564) people living with diabetes worldwide, and the global age-standardised total diabetes prevalence was 6·1% (5·8–6·5). At the super-region level, the highest age-standardised rates were observed in north Africa and the Middle East (9·3% [8·7–9·9]) and, at the regional level, in Oceania (12·3% [11·5–13·0]). Nationally, Qatar had the world’s highest age-specific prevalence of diabetes, at 76·1% (73·1–79·5) in individuals aged 75–79 years. Total diabetes prevalence—especially among older
adults—primarily reflects type 2 diabetes, which in 2021 accounted for 96·0% (95·1–96·8) of diabetes cases and 95·4% (94·9–95·9) of diabetes DALYs worldwide. In 2021, 52·2% (25·5–71·8) of global type 2 diabetes DALYs were attributable to high BMI. The contribution of high BMI to type 2 diabetes DALYs rose by 24·3% (18·5–30·4) worldwide between 1990 and 2021. By 2050, more than 1·31 billion (1·22–1·39) people are projected to have diabetes, with expected age-standardised total diabetes prevalence rates greater than 10% in two super-regions: 16·8% (16·1–17·6) in north Africa and the Middle East and 11·3% (10·8–11·9) in Latin America and Caribbean. By 2050, 89 (43·6%) of 204 countries and territories will have an age-standardised rate greater than 10%.Peer ReviewedPostprint (published version
- …