38 research outputs found
Energy-Dependent Timing of Thermal Emission in Solar Flares
We report solar flare plasma to be multi-thermal in nature based on the
theoretical model and study of the energy-dependent timing of thermal emission
in ten M-class flares. We employ high-resolution X-ray spectra observed by the
Si detector of the "Solar X-ray Spectrometer" (SOXS). The SOXS onboard the
Indian GSAT-2 spacecraft was launched by the GSLV-D2 rocket on 8 May 2003.
Firstly we model the spectral evolution of the X-ray line and continuum
emission flux F(\epsilon) from the flare by integrating a series of isothermal
plasma flux. We find that multi-temperature integrated flux F(\epsilon) is a
power-law function of \epsilon with a spectral index (\gamma) \approx -4.65.
Next, based on spectral-temporal evolution of the flares we find that the
emission in the energy range E= 4 - 15 keV is dominated by temperatures of T=
12 - 50 MK, while the multi-thermal power-law DEM index (\gamma) varies in the
range of -4.4 and -5.7. The temporal evolution of the X-ray flux F(\epsilon,t)
assuming a multi-temperature plasma governed by thermal conduction cooling
reveals that the temperature-dependent cooling time varies between 296 and 4640
s and the electron density (n_e) varies in the range of n_e= (1.77-29.3)*10^10
cm-3. Employing temporal evolution technique in the current study as an
alternative method for separating thermal from non-thermal components in the
energy spectra, we measure the break-energy point ranging between 14 and
21\pm1.0 keV.Comment: Solar Physics, in pres
Microspatial variability in community structure and photophysiology of calcified macroalgal microbiomes revealed by coupling of hyperspectral and high-resolution fluorescence imaging
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The attached file is the published version of the article