87 research outputs found

    Current Trends In Educational Technology: Implication On Educational Managers In Nigeria

    Get PDF
    This paper presents the current trends in educational technology and the implication on educational managers in Nigeria. The current trends in the field of educational technology are centred on the influence of information and communication technology on the development of educational management. Various challenges have been created for the educational managers, who are the custodians of educational resources. Some of the challenges include the use of computer management packages, Internet application, teleconferencing and so on. With the proliferation of computer networks and information technology there is increased efficiency in the management of educational resources and decision making hence, the Nigerian educational managers can boast of meeting the expected height of their contemporaries across the globe. The Information Manager Vol. 6 (1&2) 2006: pp. 8-1

    The correlation between photometric variability and radial velocity jitter, based on TESS and HARPS observations

    Full text link
    The current and upcoming high precision photometric surveys such as TESS, CHEOPS, and PLATO will provide the community with thousands of new exoplanet candidates. As a consequence, the presence of such a correlation is crucial in selecting the targets with the lowest RV jitter for efficient RV follow-up of exoplanetary candidates. Studies of this type are also crucial to design optimized observational strategies to mitigate RV jitter when searching for Earth-mass exoplanets. Our goal is to assess the correlation between high-precision photometric variability measurements and high-precision RV jitter over different time scales. We analyze 171 G, K, and M stars with available TESS high precision photometric time-series and HARPS precise RVs. We derived the stellar parameters for the stars in our sample and measured the RV jitter and photometric variability. We also estimated chromospheric Ca II H &\& K activity indicator log(RHKâ€Č)log(R' _{HK}), v sin i\textit{v sin i}, and the stellar rotational period. Finally, we evaluate how different stellar parameters and a RV sampling subset can have an impact on the potential correlations. We find a varying correlation between the photometric variability and RV jitter as function of time intervals between the TESS photometric observation and HARPS RV. As the time intervals of the observations considered for the analysis increases, the correlation value and significance becomes smaller and weaker, to the point that it becomes negligible. We also find that for stars with a photometric variability above 6.5 ppt the correlation is significantly stronger. We show that such a result can be due to the transition between the spot-dominated and the faculae-dominated regime. We quantified the correlations and updated the relationship between chromospheric Ca II H &\& K activity indicator log(RHKâ€Č)log(R' _{HK}) and RV jitter.Comment: Accepted for publication in section 10. Planets and planetary systems of A&

    Exploring the stellar surface phenomena of WASP-52 and HAT-P-30 with ESPRESSO

    Full text link
    We analyse spectroscopic and photometric transits of the hot Jupiters WASP-52b and HAT-P30b obtained with ESPRESSO, Eulercam and NGTS for both targets, and additional TESS data for HAT-P-30. Our goal is to update the system parameters and refine our knowledge of the host star surfaces. For WASP-52, the companion planet has occulted starspots in the past, and as such our aim was to use the reloaded Rossiter-McLaughlin technique to directly probe its starspot properties. Unfortunately, we find no evidence for starspot occultations in the datasets herein. Additionally, we searched for stellar surface differential rotation (DR) and any centre-to-limb variation (CLV) due to convection, but return a null detection of both. This is unsurprising for WASP-52, given its relatively cool temperature, high magnetic activity (which leads to lower CLV), and projected obliquity near 0 degrees (meaning the transit chord is less likely to cross several stellar latitudes). For HAT-P-30, this result was more surprising given its hotter effective temperature, lower magnetic field, and high projected obliquity (near 70 degrees). To explore the reasons behind the null DR and CLV detection for HAT-P-30, we simulated a variety of scenarios. We find that either the CLV present on HAT-P-30 is below the solar level or the presence of DR prevents a CLV detection given the precision of the data herein. A careful treatment of both DR and CLV is required, especially for systems with high impact factors, due to potential degeneracies between the two. Future observations and/or a sophisticated treatment of the red noise present in the data (likely due to granulation) is required to refine the DR and CLV for these particular systems; such observations would also present another opportunity to try to examine starspots on WASP-52.Comment: 11 pages main text, 8 figures; accepted for publication in A&

    Exploring the stellar surface phenomena of WASP-52 and HAT-P-30 with ESPRESSO

    Get PDF
    We analyse spectroscopic and photometric transits of the hot Jupiters WASP-52 b and HAT-P30 b obtained with ESPRESSO, Eulercam and NGTS for both targets, and additional TESS data for HAT-P-30. Our goal is to update the system parameters and refine our knowledge of the host star surfaces. For WASP-52, the companion planet has occulted starspots in the past, and as such our aim was to use the reloaded Rossiter-McLaughlin technique to directly probe its starspot properties. Unfortunately, we find no evidence for starspot occultations in the datasets herein. Additionally, we searched for stellar surface differential rotation (DR) and any centre-to-limb variation (CLV) due to convection, but return a null detection of both. This is unsurprising for WASP-52, given its relatively cool temperature, high magnetic activity (which leads to lower CLV), and projected obliquity near 0° (meaning the transit chord is less likely to cross several stellar latitudes). For HAT-P-30, this result was more surprising given its hotter effective temperature, lower magnetic field, and high projected obliquity (near 70°). To explore the reasons behind the null DR and CLV detection for HAT-P-30, we simulated a variety of scenarios. We find that either the CLV present on HAT-P-30 is below the solar level or the presence of DR prevents a CLV detection given the precision of the data herein. A careful treatment of both DR and CLV is required, especially for systems with high impact factors, due to potential degeneracies between the two. Future observations and/or a sophisticated treatment of the red noise present in the data (likely due to granulation) is required to refine the DR and CLV for these particular systems; such observations would also present another opportunity to try to examine starspots on WASP-52

    Detection of the tidal deformation of WASP-103b at 3 σ with CHEOPS

    Get PDF
    Funding: A.C.C. and T.G.W. acknowledge support from STFC consolidated grant number ST/M001296/1.Context. Ultra-short period planets undergo strong tidal interactions with their host star which lead to planet deformation and orbital tidal decay. Aims: WASP-103b is the exoplanet with the highest expected deformation signature in its transit light curve and one of the shortest expected spiral-in times. Measuring the tidal deformation of the planet would allow us to estimate the second degree fluid Love number and gain insight into the planet's internal structure. Moreover, measuring the tidal decay timescale would allow us to estimate the stellar tidal quality factor, which is key to constraining stellar physics. Methods: We obtained 12 transit light curves of WASP-103b with the CHaracterising ExOplanet Satellite (CHEOPS) to estimate the tidal deformation and tidal decay of this extreme system. We modelled the high-precision CHEOPS transit light curves together with systematic instrumental noise using multi-dimensional Gaussian process regression informed by a set of instrumental parameters. To model the tidal deformation, we used a parametrisation model which allowed us to determine the second degree fluid Love number of the planet. We combined our light curves with previously observed transits of WASP-103b with the Hubble Space Telescope (HST) and Spitzer to increase the signal-to-noise of the light curve and better distinguish the minute signal expected from the planetary deformation. Results: We estimate the radial Love number of WASP-103b to be hf =1.59-0.53+0.45. This is the first time that the tidal deformation is directly detected (at 3 σ) from the transit light curve of an exoplanet. Combining the transit times derived from CHEOPS, HST, and Spitzer light curves with the other transit times available in the literature, we find no significant orbital period variation for WASP-103b. However, the data show a hint of an orbital period increase instead of a decrease, as is expected for tidal decay. This could be either due to a visual companion star if this star is bound, the Applegate effect, or a statistical artefact. Conclusions: The estimated Love number of WASP-103b is similar to Jupiter's. This will allow us to constrain the internal structure and composition of WASP-103b, which could provide clues on the inflation of hot Jupiters. Future observations with James Webb Space Telescope can better constrain the radial Love number of WASP-103b due to their high signal-to-noise and the smaller signature of limb darkening in the infrared. A longer time baseline is needed to constrain the tidal decay in this system. The transit light curves are only available at the CDS via anonymous ftpt o cdsarc.u-strasbg.fr(ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/657/A52.Publisher PDFPeer reviewe

    CHEOPS observations of KELT-20 b/MASCARA-2 b: An aligned orbit and signs of variability from a reflective dayside

    Full text link
    Occultations are windows of opportunity to indirectly peek into the dayside atmosphere of exoplanets. High-precision transit events provide information on the spin-orbit alignment of exoplanets around fast-rotating hosts. We aim to precisely measure the planetary radius and geometric albedo of the ultra-hot Jupiter (UHJ) KELT-20 b as well as the system's spin-orbit alignment. We obtained optical high-precision transits and occultations of KELT-20 b using CHEOPS observations in conjunction with the simultaneous TESS observations. We interpreted the occultation measurements together with archival infrared observations to measure the planetary geometric albedo and dayside temperatures. We further used the host star's gravity-darkened nature to measure the system's obliquity. We present a time-averaged precise occultation depth of 82(6) ppm measured with seven CHEOPS visits and 131(+8/-7) ppm from the analysis of all available TESS photometry. Using these measurements, we precisely constrain the geometric albedo of KELT-20 b to 0.26(0.04) and the brightness temperature of the dayside hemisphere to 2566(+77/-80) K. Assuming Lambertian scattering law, we constrain the Bond albedo to 0.36(+0.04/-0.05) along with a minimal heat transfer to the night side. Furthermore, using five transit observations we provide stricter constraints of 3.9(1.1) degrees on the sky-projected obliquity of the system. The aligned orbit of KELT-20 b is in contrast to previous CHEOPS studies that have found strongly inclined orbits for planets orbiting other A-type stars. The comparably high planetary geometric albedo of KELT-20 b corroborates a known trend of strongly irradiated planets being more reflective. Finally, we tentatively detect signs of temporal variability in the occultation depths, which might indicate variable cloud cover advecting onto the planetary day side.Comment: 27 pages, 15 figures, Accepted for publication in Astronomy & Astrophysic

    The geometric albedo of the hot Jupiter HD 189733b measured with CHEOPS

    Full text link
    Context. Measurements of the occultation of an exoplanet at visible wavelengths allow us to determine the reflective properties of a planetary atmosphere. The observed occultation depth can be translated into a geometric albedo. This in turn aids in characterising the structure and composition of an atmosphere by providing additional information on the wavelength-dependent reflective qualities of the aerosols in the atmosphere. Aims. Our aim is to provide a precise measurement of the geometric albedo of the gas giant HD 189733b by measuring the occultation depth in the broad optical bandpass of CHEOPS (350 - 1100 nm). Methods. We analysed 13 observations of the occultation of HD 189733b performed by CHEOPS utilising the Python package PyCHEOPS. The resulting occultation depth is then used to infer the geometric albedo accounting for the contribution of thermal emission from the planet. We also aid the analysis by refining the transit parameters combining observations made by the TESS and CHEOPS space telescopes. Results. We report the detection of an 24.7±4.524.7 \pm 4.5 ppm occultation in the CHEOPS observations. This occultation depth corresponds to a geometric albedo of 0.076±0.0160.076 \pm 0.016. Our measurement is consistent with models assuming the atmosphere of the planet to be cloud-free at the scattering level and absorption in the CHEOPS band to be dominated by the resonant Na doublet. Taking into account previous optical-light occultation observations obtained with the Hubble Space Telescope, both measurements combined are consistent with a super-stellar Na elemental abundance in the dayside atmosphere of HD 189733b. We further constrain the planetary Bond albedo to between 0.013 and 0.42 at 3σ\sigma confidence.Comment: 17 pages, 10 figures, accepted for publication in A&

    Examining the orbital decay targets KELT-9 b, KELT-16 b, and WASP-4 b, and the transit-timing variations of HD 97658 b,

    Get PDF
    Context. Tidal orbital decay is suspected to occur for hot Jupiters in particular, with the only observationally confirmed case of this being WASP-12 b. By examining this effect, information on the properties of the host star can be obtained using the so-called stellar modified tidal quality factor Qâ€Č∗, which describes the efficiency with which the kinetic energy of the planet is dissipated within the star. This can provide information about the interior of the star. Aims. In this study, we aim to improve constraints on the tidal decay of the KELT-9, KELT-16, and WASP-4 systems in order to find evidence for or against the presence of tidal orbital decay. With this, we want to constrain the Qâ€Č∗ value for each star. In addition, we aim to test the existence of the transit timing variations (TTVs) in the HD 97658 system, which previously favoured a quadratic trend with increasing orbital period. Methods. Making use of newly acquired photometric observations from CHEOPS (CHaracterising ExOplanet Satellite) and TESS (Transiting Exoplanet Survey Satellite), combined with archival transit and occultation data, we use Markov chain Monte Carlo (MCMC) algorithms to fit three models to the data, namely a constant-period model, an orbital-decay model, and an apsidal-precession model. Results. We find that the KELT-9 system is best described by an apsidal-precession model for now, with an orbital decay trend at over 2 σ being a possible solution as well. A Keplerian orbit model with a constant orbital period provides the best fit to the transit timings of KELT-16 b because of the scatter and scale of their error bars. The WASP-4 system is best represented by an orbital decay model at a 5 σ significance, although apsidal precession cannot be ruled out with the present data. For HD 97658 b, using recently acquired transit observations, we find no conclusive evidence for a previously suspected strong quadratic trend in the data
    • 

    corecore