74 research outputs found

    High hydrostatic pressure induces counterclockwise to clockwise reversals of the Escherichia coli flagellar motor.

    Get PDF
    The bacterial flagellar motor is a reversible rotary machine that rotates a left-handed helical filament, allowing bacteria to swim toward a more favorable environment. The direction of rotation reverses from counterclockwise (CCW) to clockwise (CW), and vice versa, in response to input from the chemotaxis signaling circuit. CW rotation is normally caused by binding of the phosphorylated response regulator CheY (CheY-P), and strains lacking CheY are typically locked in CCW rotation. The detailed mechanism of switching remains unresolved because it is technically difficult to regulate the level of CheY-P within the concentration range that produces flagellar reversals. Here, we demonstrate that high hydrostatic pressure can induce CW rotation even in the absence of CheY-P. The rotation of single flagellar motors in Escherichia coli cells with the cheY gene deleted was monitored at various pressures and temperatures. Application of >120 MPa pressure induced a reversal from CCW to CW at 20°C, although at that temperature, no motor rotated CW at ambient pressure (0.1 MPa). At lower temperatures, pressure-induced changes in direction were observed at pressures of <120 MPa. CW rotation increased with pressure in a sigmoidal fashion, as it does in response to increasing concentrations of CheY-P. Application of pressure generally promotes the formation of clusters of ordered water molecules on the surfaces of proteins. It is possible that hydration of the switch complex at high pressure induces structural changes similar to those caused by the binding of CheY-P

    A comparative study of asthma with airflow limitation and asthma-COPD overlap using the forced oscillation technique

    Get PDF
    The forced oscillation technique(FOT), which requires breathing without forced action, is a useful tool that can measure respiratory impedance. We investigated the physiological differences between asthma with smoking-unrelated airflow limitation and asthma-chronic obstructive pulmonary disease(COPD)overlap(ACO)using the FOT. Among 275 patients with asthma who presented at the Showa University Hospital from April 2018 through March 2019, 211 were enrolled and assigned into the asthma(BA), asthma with airflow limitation(AL), or ACO groups. Respiratory impedance measured using the FOT were compared among the groups. There were no significant differences in spirometry data between the AL and the ACO group. The AL group had higher respiratory resistance at 5Hz(R5), 20Hz(R20), and reactance at 5Hz than the ACO group, but there was no significant difference in subtracting R20 from R5(R5-R20). R5 and R20 were similar between the ACO and the BA groups, but R5-R20, resonant frequency(Fres), and low-frequency reactance area were significantly higher in the ACO group than the BA group. Fres yielded the highest area under the curve(AUC)to identify airflow limitation, and R20 yielded the highest AUC to identify the ACO group among patients with airflow limitation. An analysis using the cut off value to identify airflow limitation and ACO detected 33 patients as having ACO, 17 of whom were diagnosed with ACO. R5 and R20 measured by FOT are higher in AL than in ACO despite no difference in spirometry data, and are not significantly different between BA and ACO. Therefore, FOT aids our understanding of the physiological characteristics and provides clues for the treatment in asthmatics with airflow limitation

    Improvement in Frailty in a Patient With Severe Chronic Obstructive Pulmonary Disease After Ninjin'yoeito Therapy: A Case Report

    Get PDF
    Frailty is a poor prognostic factor in patients with chronic obstructive pulmonary disease (COPD). Although various studies have assessed the effects of conventional treatment with bronchodilators, nutritional support, and pulmonary rehabilitation for frailty in patients with COPD, none have addressed the effects of traditional Japanese medicine (Kampo medicine). Herein, we report the successful management of frailty using Ninjin'yoeito therapy in a 76-year-old patient with COPD. Despite being prescribed multiple bronchodilators, nutritional supplement therapy, patient education, and pulmonary rehabilitation, the patient exhibited unintentional weight loss, low energy, and low physical activity. Ninjin'yoeito was prescribed and these subjective symptoms began to improve 1 month after treatment initiation. In 6 months, the patient reported no frailty, had increased muscle mass, and had achieved an almost normal healthy state. Ninjin'yoeito has been associated with both physical effects, such as improvement in overall physical strength and appetite, and reduction in fatigue, and psychological effects, such as greater motivation and reduction of depression and anxiety symptoms. Physicians have usually treated COPD primarily with organ-specific treatments, such as bronchodilators; however, addressing both the physiological and psychological vulnerability has been difficult. This case report illustrates the potential usefulness of Ninjin'yoeito treatment for frailty in patients with COPD

    Inhibitory Effects of Chlorella Extract on Airway Hyperresponsiveness and Airway Remodeling in a Murine Model of Asthma

    Get PDF
    Chlorella extract (CE) has been shown to induce production of T helper-1 cytokines, and regulate serum IgE levels in animal models of asthma. We aimed to evaluate whether CE could inhibit ovalbumin (OVA)-induced airway hyperresponsiveness (AHR) and airway remodeling in a murine model of asthma. Balb/c mice were allocated to four groups: a control group (no OVA exposure, not given CE), a CE group (no OVA exposure, given CE), an asthma group (sensitized/challenged with OVA, not given CE) and a CE+asthma group (sensitized/challenged with OVA, given CE). In the asthma and CE+asthma groups, mice were sensitized with OVA on day 0 and day 12, and then challenged with OVA on three consecutive days. In the CE and CE+asthma groups, the mice were given feed containing 2% CE. We assessed AHR to methacholine, and analyzed bronchoalveolar lavage fluid (BALF), serum, lung tissue and spleen cells. Administration of CE was associated with significantly lower AHR in OVA-sensitized and challenged mice. CE administration was also associated with marked reduction of total cells, eosinophils and T helper-2 cytokines (IL-4, IL-5 and IL-13) in BALF. In addition, administration of CE significantly decreased the numbers of periodic acid-Schiff (PAS)-positive cells in OVA-sensitized and challenged mice. Administration of CE also directly suppressed IL-4, IL-5 and IL-13 production in spleen cells of OVA-sensitized and challenged mice. These results indicate that CE can partly prevent AHR and airway remodeling in a murine model of asthma

    Long-term follow-up of production of IgM and IgG antibodies against SARS-CoV-2 among patients with COVID-19

    Get PDF
    The patients diagnosed with coronavirus disease 2019 (COVID-19) produce IgM and IgG antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the frequency and duration of antibody production still need to be fully understood. In the present study, we investigated the duration of antibody production after SARS-CoV-2 infection. The patients diagnosed with COVID-19 were monitored over twelve months for the production of SARS-CoV-2 IgM and IgG antibodies, and the characteristics of these patients were examined. Forty-five patients diagnosed with COVID-19 were enrolled, and thirty-four patients were followed up until they tested negative for SARS-CoV-2 IgM and IgG antibodies or up to twelve months after the date of a negative SARS-CoV-2 polymerase chain reaction (PCR) result. The positivity rates of SARS-CoV-2 IgM and IgG antibodies were 27.3% and 68.2% when SARS-CoV-2 PCR was negative, 20.6% and 70.6% after one month, 8.8% and 52.9% after three months, and 0.0% and 14.7% after six months, respectively. Moreover, we compared patients with milder conditions who did not require oxygen administration with those with severe conditions which required oxygen administration. The positivity rate of SARS-CoV-2 IgG antibodies was significantly higher in patients with severe conditions than in those with milder conditions on the date of a negative SARS-CoV-2 PCR result and after one month and three months, but not after six months. Patients with more severe COVID-19 produced more SARS-CoV-2 IgG antibodies. Moreover, it is suggested that the duration of IgG antibody production is independent of COVID-19 severity

    Airway Epithelial Dysfunction in Asthma: Relevant to Epidermal Growth Factor Receptors and Airway Epithelial Cells

    No full text
    Airway epithelium plays an important role as the first barrier from external pathogens, including bacteria, viruses, chemical substances, and allergic components. Airway epithelial cells also have pivotal roles as immunological coordinators of defense mechanisms to transfer signals to immunologic cells to eliminate external pathogens from airways. Impaired airway epithelium allows the pathogens to remain in the airway epithelium, which induces aberrant immunological reactions. Dysregulated functions of asthmatic airway epithelium have been reported in terms of impaired wound repair, fragile tight junctions, and excessive proliferation, leading to airway remodeling, which contributes to aberrant airway responses caused by external pathogens. To maintain airway epithelium integrity, a family of epidermal growth factor receptors (EGFR) have pivotal roles in mechanisms of cell growth, proliferation, and differentiation. There are extensive studies focusing on the relation between EGFR and asthma pathophysiology, which describe airway remodeling, airway hypermucus secretion, as well as immunological responses of airway inflammation. Furthermore, the second EGFR family member, erythroblastosis oncogene B2 (ErbB2), has been recognized to be involved with impaired wound recovery and epithelial differentiation in asthmatic airway epithelium. In this review, the roles of the EGFR family in asthmatic airway epithelium are focused on to elucidate the pathogenesis of airway epithelial dysfunction in asthma

    Hybrid-fuel bacterial flagellar motors in Escherichia coli

    No full text

    Hybrid-fuel bacterial flagellar motors in Escherichia coli

    No full text
    The bacterial flagellar motor rotates driven by an electrochemical ion gradient across the cytoplasmic membrane, either H(+) or Na(+) ions. The motor consists of a rotor ∼50 nm in diameter surrounded by multiple torque-generating ion-conducting stator units. Stator units exchange spontaneously between the motor and a pool in the cytoplasmic membrane on a timescale of minutes, and their stability in the motor is dependent upon the ion gradient. We report a genetically engineered hybrid-fuel flagellar motor in Escherichia coli that contains both H(+)- and Na(+)-driven stator components and runs on both types of ion gradient. We controlled the number of each type of stator unit in the motor by protein expression levels and Na(+) concentration ([Na(+)]), using speed changes of single motors driving 1-μm polystyrene beads to determine stator unit numbers. De-energized motors changed from locked to freely rotating on a timescale similar to that of spontaneous stator unit exchange. Hybrid motor speed is simply the sum of speeds attributable to individual stator units of each type. With Na(+) and H(+) stator components expressed at high and medium levels, respectively, Na(+) stator units dominate at high [Na(+)] and are replaced by H(+) units when Na(+) is removed. Thus, competition between stator units for spaces in a motor and sensitivity of each type to its own ion gradient combine to allow hybrid motors to adapt to the prevailing ion gradient. We speculate that a similar process may occur in species that naturally express both H(+) and Na(+) stator components sharing a common rotor

    Hybrid-fuel bacterial flagellar motors in Escherichia coli

    No full text
    The bacterial flagellar motor rotates driven by an electrochemical ion gradient across the cytoplasmic membrane, either H(+) or Na(+) ions. The motor consists of a rotor ∼50 nm in diameter surrounded by multiple torque-generating ion-conducting stator units. Stator units exchange spontaneously between the motor and a pool in the cytoplasmic membrane on a timescale of minutes, and their stability in the motor is dependent upon the ion gradient. We report a genetically engineered hybrid-fuel flagellar motor in Escherichia coli that contains both H(+)- and Na(+)-driven stator components and runs on both types of ion gradient. We controlled the number of each type of stator unit in the motor by protein expression levels and Na(+) concentration ([Na(+)]), using speed changes of single motors driving 1-μm polystyrene beads to determine stator unit numbers. De-energized motors changed from locked to freely rotating on a timescale similar to that of spontaneous stator unit exchange. Hybrid motor speed is simply the sum of speeds attributable to individual stator units of each type. With Na(+) and H(+) stator components expressed at high and medium levels, respectively, Na(+) stator units dominate at high [Na(+)] and are replaced by H(+) units when Na(+) is removed. Thus, competition between stator units for spaces in a motor and sensitivity of each type to its own ion gradient combine to allow hybrid motors to adapt to the prevailing ion gradient. We speculate that a similar process may occur in species that naturally express both H(+) and Na(+) stator components sharing a common rotor

    The TAR-RNA binding protein is required for immunoresponses triggered by Cardiovirus infection

    No full text
    LGP2 and MDA5 cooperate to detect viral RNA in the cytoplasm of Picornavirus-infected cells and activate innate immune responses. To further define regulatory components of RNA recognition by LGP2/MDA5, a yeast two-hybrid screen was used to identify LGP2-interacting proteins. The screening has identified the TAR-RNA binding protein (TRBP), which is known to be an essential factor for RNA interference (RNAi). Immuno-precipitation experiments demonstrated that TRBP interacted specifically with LGP2 but not with related RIG-I-like receptors, RIG-I or MDA5. siRNA knockdown experiments indicate that TRBP is important for Cardiovirus-triggered interferon responses, but TRBP is not involved in Sendai virus-triggered interferon response that is mediated mainly by RIG-I. To support functional interaction with LGP2, overexpressed TRBP increased Cardiovirus-triggered interferon promoter activity only when LGP2 and MDA5 are co-expressed but not MDA5 alone. Together, our findings illustrate a possible connection between an RNAi-regulatory factor and antiviral RNA recognition that is specifically required for a branch of the virus induced innate immune response
    corecore