32 research outputs found

    PathogenMIPer: a tool for the design of molecular inversion probes to detect multiple pathogens

    Get PDF
    BACKGROUND: Here we describe PathogenMIPer, a software program for designing molecular inversion probe (MIP) oligonucleotides for use in pathogen identification and detection. The software designs unique and specific oligonucleotide probes targeting microbial or other genomes. The tool tailors all probe sequence components (including target-specific sequences, barcode sequences, universal primers and restriction sites) and combines these components into ready-to-order probes for use in a MIP assay. The system can harness the genetic variability available in an entire genome in designing specific probes for the detection of multiple co-infections in a single tube using a MIP assay. RESULTS: PathogenMIPer can accept sequence data in FASTA file format, and other parameter inputs from the user through a graphical user interface. It can design MIPs not only for pathogens, but for any genome for use in parallel genomic analyses. The software was validated experimentally by applying it to the detection of human papilloma virus (HPV) as a model system, which is associated with various human malignancies including cervical and skin cancers. Initial tests of laboratory samples using the MIPs developed by the PathogenMIPer to recognize 24 different types of HPVs gave very promising results, detecting even a small viral load of single as well as multiple infections (Akhras et al, personal communication). CONCLUSION: PathogenMIPer is a software for designing molecular inversion probes for detection of multiple target DNAs in a sample using MIP assays. It enables broader use of MIP technology in the detection through genotyping of pathogens that are complex, difficult-to-amplify, or present in multiple subtypes in a sample

    A Rapid, Cost-Effective Method of Assembly and Purification of Synthetic DNA Probes >100 bp

    Get PDF
    Here we introduce a rapid, cost-effective method of generating molecular DNA probes in just under 15 minutes without the need for expensive, time-consuming gel-extraction steps. As an example, we enzymatically concatenated six variable strands (50 bp) with a common strand sequence (51 bp) in a single pool using Fast-Link DNA ligase to produce 101 bp targets (10 min). Unincorporated species were then filtered out by passing the crude reaction through a size-exclusion column (<5 min). We then compared full-length product yield of crude and purified samples using HPLC analysis; the results of which clearly show our method yields three-quarters that of the crude sample (50% higher than by gel-extraction). And while we substantially reduced the amount of unligated product with our filtration process, higher purity and yield, with an increase in number of stands per reaction (>12) could be achieved with further optimization. Moreover, for large-scale assays, we envision this method to be fully automated with the use of robotics such as the Biomek FX; here, potentially thousands of samples could be pooled, ligated and purified in either a 96, 384 or 1536-well platform in just minutes

    Connector Inversion Probe Technology: A Powerful One-Primer Multiplex DNA Amplification System for Numerous Scientific Applications

    Get PDF
    We combined components of a previous assay referred to as Molecular Inversion Probe (MIP) with a complete gap filling strategy, creating a versatile powerful one-primer multiplex amplification system. As a proof-of-concept, this novel method, which employs a Connector Inversion Probe (CIPer), was tested as a genetic tool for pathogen diagnosis, typing, and antibiotic resistance screening with two distinct systems: i) a conserved sequence primer system for genotyping Human Papillomavirus (HPV), a cancer-associated viral agent and ii) screening for antibiotic resistance mutations in the bacterial pathogen Neisseria gonorrhoeae. We also discuss future applications and advances of the CIPer technology such as integration with digital amplification and next-generation sequencing methods. Furthermore, we introduce the concept of two-dimension informational barcodes, i.e. “multiplex multiplexing padlocks” (MMPs). For the readers' convenience, we also provide an on-line tutorial with user-interface software application CIP creator 1.0.1, for custom probe generation from virtually any new or established primer-pairs

    PathogenMip Assay: A Multiplex Pathogen Detection Assay

    Get PDF
    The Molecular Inversion Probe (MIP) assay has been previously applied to a large-scale human SNP detection. Here we describe the PathogenMip Assay, a complete protocol for probe production and applied approaches to pathogen detection. We have demonstrated the utility of this assay with an initial set of 24 probes targeting the most clinically relevant HPV genotypes associated with cervical cancer progression. Probe construction was based on a novel, cost-effective, ligase-based protocol. The assay was validated by performing pyrosequencing and Microarray chip detection in parallel experiments. HPV plasmids were used to validate sensitivity and selectivity of the assay. In addition, 20 genomic DNA extracts from primary tumors were genotyped with the PathogenMip Assay results and were in 100% agreement with conventional sequencing using an L1-based HPV genotyping protocol. The PathogenMip Assay is a widely accessible protocol for producing and using highly discriminating probes, with experimentally validated results in pathogen genotyping, which could potentially be applied to the detection and characterization of any microbe

    Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial

    Get PDF
    Background: Glucagon-like peptide 1 receptor agonists differ in chemical structure, duration of action, and in their effects on clinical outcomes. The cardiovascular effects of once-weekly albiglutide in type 2 diabetes are unknown. We aimed to determine the safety and efficacy of albiglutide in preventing cardiovascular death, myocardial infarction, or stroke. Methods: We did a double-blind, randomised, placebo-controlled trial in 610 sites across 28 countries. We randomly assigned patients aged 40 years and older with type 2 diabetes and cardiovascular disease (at a 1:1 ratio) to groups that either received a subcutaneous injection of albiglutide (30–50 mg, based on glycaemic response and tolerability) or of a matched volume of placebo once a week, in addition to their standard care. Investigators used an interactive voice or web response system to obtain treatment assignment, and patients and all study investigators were masked to their treatment allocation. We hypothesised that albiglutide would be non-inferior to placebo for the primary outcome of the first occurrence of cardiovascular death, myocardial infarction, or stroke, which was assessed in the intention-to-treat population. If non-inferiority was confirmed by an upper limit of the 95% CI for a hazard ratio of less than 1·30, closed testing for superiority was prespecified. This study is registered with ClinicalTrials.gov, number NCT02465515. Findings: Patients were screened between July 1, 2015, and Nov 24, 2016. 10 793 patients were screened and 9463 participants were enrolled and randomly assigned to groups: 4731 patients were assigned to receive albiglutide and 4732 patients to receive placebo. On Nov 8, 2017, it was determined that 611 primary endpoints and a median follow-up of at least 1·5 years had accrued, and participants returned for a final visit and discontinuation from study treatment; the last patient visit was on March 12, 2018. These 9463 patients, the intention-to-treat population, were evaluated for a median duration of 1·6 years and were assessed for the primary outcome. The primary composite outcome occurred in 338 (7%) of 4731 patients at an incidence rate of 4·6 events per 100 person-years in the albiglutide group and in 428 (9%) of 4732 patients at an incidence rate of 5·9 events per 100 person-years in the placebo group (hazard ratio 0·78, 95% CI 0·68–0·90), which indicated that albiglutide was superior to placebo (p&lt;0·0001 for non-inferiority; p=0·0006 for superiority). The incidence of acute pancreatitis (ten patients in the albiglutide group and seven patients in the placebo group), pancreatic cancer (six patients in the albiglutide group and five patients in the placebo group), medullary thyroid carcinoma (zero patients in both groups), and other serious adverse events did not differ between the two groups. There were three (&lt;1%) deaths in the placebo group that were assessed by investigators, who were masked to study drug assignment, to be treatment-related and two (&lt;1%) deaths in the albiglutide group. Interpretation: In patients with type 2 diabetes and cardiovascular disease, albiglutide was superior to placebo with respect to major adverse cardiovascular events. Evidence-based glucagon-like peptide 1 receptor agonists should therefore be considered as part of a comprehensive strategy to reduce the risk of cardiovascular events in patients with type 2 diabetes. Funding: GlaxoSmithKline

    Nucleic Acid Based Pathogen Diagnostics

    No full text
    Pathogenic organisms are transmitted to the host organism through all possible connected pathways, and cause a myriad of diseases states. Commonly occurring curable infectious diseases still impose the greatest health impacts on a worldwide perspective. The Bill &amp; Melinda Gates Foundation partnered with RAND Corporation to form the Global Health Diagnostics Forum, with the goal of establishing and interpreting mathematical models for what effects a newly introduced point-of-care pathogen diagnostic would have in developing countries. The results were astonishing, with potentially millions of lives to be saved on an annual basis. Golden standard for diagnostics of pathogenic bacteria has long been cultureable medias. Environmental biologists have estimated that less than 1% of all bacteria are cultureable. Genomic-based approaches offer the potential to identify all microbes from all the biological kingdoms. Nucleic acid based pathogen diagnostics has evolved significantly over the past decades. Novel technologies offer increased potential in sensitivity, specificity, decreased costs and parallel sample management. However, most methods are confined to core laboratory facilities. To construct an ultimate nucleic acid based diagnostic for use in areas of need, potential frontline techniques need to be identified and combined. The research focus of this doctoral thesis work has been to develop and apply nucleic acid based methods for pathogen diagnostics. Methods and assays were applied to the two distinct systems i) screening for antibiotic resistance mutations in the bacterial pathogen Neisseria gonorrhoeae, and ii) genotype determination of the cancer causative Human Papillomavirus (HPV). The first part of the study included development of rapid, direct and multiplex Pyrosequencing nucleic acid screenings. With improved methodology in the sample preparation process, we could detect an existence of multiple co-infecting HPV genotypes at greater sensitivities than previously described, when using the same type of methodology. The second part of the study focused on multiplex nucleic acid amplification strategies using Molecular Inversion Probes with end-step Pyrosequencing screening. The PathogenMip assay presents a complete detection schematic for virtually any known pathogenic organism. We also introduce the novel Connector Inversion Probe, a padlock probe capable of complete gap-fill reactions for multiplex nucleic acid amplifications.Patogena organismer smittas till värd organismen genom alla möjliga kontaktnätverk och skapar en mångfald olika sjukdomstillstånd. Dock är det fortfarande vanligt förekommande behandlingsbara infektiösa sjukdomar som orsakar den största hälsoförlusten, sett från ett globalt perspektiv. Bill och Melinda Gates Stiftelsen samarbetade med RAND kooperation för att forma “The Global Health Diagnostics Forum”. Deras mål var att etablera och analysera matematiska modeller för vilka effekter en ny diagnostisk metod utrustat för fältarbete skulle ha i utvecklingsländer. Resultaten var häpnadsveckande, med potentiellt miljoner av liv som skulle kunna räddas på en årlig basis. Den etablerade standarden för diagnostik av patogena bakterier har länge varit kultiveringsmedia baserad. Miljö specialiserade biologer har estimerat att mindre än 1 % av alla bakterie arter går att kultivera. Dock erbjuder genetiska analyser potentialen att kunna identifiera alla mikrober från alla de biologiska rikena. Nukleinsyrebaserade diagnostiska metoder har märkbart förbättrats över de senaste årtionden. Nya tekniker erbjuder utökad sensitivitet, selektivitet, sänkta kostnader och parallella analyser av patient prover. Dock är de flesta metoderna begränsade till standardiserade laboratoriemiljöer. För att konstruera en väl fungerande diagnostisk fältutrustning för användning i problem områden, behöver världsledande tekniker identifieras och kombineras. Fokuseringsområdet för denna doktorsavhandling har varit att utveckla och utföra nukleinsyrebaserade metoder för patogen diagnostik. Metoder och experimentella utförande applicerades på två distinkta system i) sökning av antibiotika resistens relaterade mutationer i den patogena bakterien Neisseria gonorrhoeae och ii) genotypning av det cancer orsakande Humana Papillomaviruset (HPV). Den första delen av studien inriktade sig mot utveckling av snabba, direkta och multiplexa Pyrosekvenserings baserade nukleinsyreanalyser. Med förbättrad provprepareringsmetodologi kunde vi detektera multipla HPV infektioner med högre sensitivitet än vad tidigare beskrivits med liknande metodologi. Den andra delen av studien fokuserades på multiplexa nukleinsyre amplifikationer med “Molecular Inversion Probe” tekniken med sista steg Pyrosekvenserings analys. “PathogenMip assay” erbjuder ett komplett detektionsprotokoll för alla kända patogena organismer. Vi introducerar även den nya “Connector Inversion Probe”, en “Padlock Probe” kapabel att genomföra kompletta gap fyllningar för multiplex nukleinsyre amplifiering.QC 2010062

    Nucleic Acid Based Pathogen Diagnostics

    No full text
    Pathogenic organisms are transmitted to the host organism through all possible connected pathways, and cause a myriad of diseases states. Commonly occurring curable infectious diseases still impose the greatest health impacts on a worldwide perspective. The Bill &amp; Melinda Gates Foundation partnered with RAND Corporation to form the Global Health Diagnostics Forum, with the goal of establishing and interpreting mathematical models for what effects a newly introduced point-of-care pathogen diagnostic would have in developing countries. The results were astonishing, with potentially millions of lives to be saved on an annual basis. Golden standard for diagnostics of pathogenic bacteria has long been cultureable medias. Environmental biologists have estimated that less than 1% of all bacteria are cultureable. Genomic-based approaches offer the potential to identify all microbes from all the biological kingdoms. Nucleic acid based pathogen diagnostics has evolved significantly over the past decades. Novel technologies offer increased potential in sensitivity, specificity, decreased costs and parallel sample management. However, most methods are confined to core laboratory facilities. To construct an ultimate nucleic acid based diagnostic for use in areas of need, potential frontline techniques need to be identified and combined. The research focus of this doctoral thesis work has been to develop and apply nucleic acid based methods for pathogen diagnostics. Methods and assays were applied to the two distinct systems i) screening for antibiotic resistance mutations in the bacterial pathogen Neisseria gonorrhoeae, and ii) genotype determination of the cancer causative Human Papillomavirus (HPV). The first part of the study included development of rapid, direct and multiplex Pyrosequencing nucleic acid screenings. With improved methodology in the sample preparation process, we could detect an existence of multiple co-infecting HPV genotypes at greater sensitivities than previously described, when using the same type of methodology. The second part of the study focused on multiplex nucleic acid amplification strategies using Molecular Inversion Probes with end-step Pyrosequencing screening. The PathogenMip assay presents a complete detection schematic for virtually any known pathogenic organism. We also introduce the novel Connector Inversion Probe, a padlock probe capable of complete gap-fill reactions for multiplex nucleic acid amplifications.Patogena organismer smittas till värd organismen genom alla möjliga kontaktnätverk och skapar en mångfald olika sjukdomstillstånd. Dock är det fortfarande vanligt förekommande behandlingsbara infektiösa sjukdomar som orsakar den största hälsoförlusten, sett från ett globalt perspektiv. Bill och Melinda Gates Stiftelsen samarbetade med RAND kooperation för att forma “The Global Health Diagnostics Forum”. Deras mål var att etablera och analysera matematiska modeller för vilka effekter en ny diagnostisk metod utrustat för fältarbete skulle ha i utvecklingsländer. Resultaten var häpnadsveckande, med potentiellt miljoner av liv som skulle kunna räddas på en årlig basis. Den etablerade standarden för diagnostik av patogena bakterier har länge varit kultiveringsmedia baserad. Miljö specialiserade biologer har estimerat att mindre än 1 % av alla bakterie arter går att kultivera. Dock erbjuder genetiska analyser potentialen att kunna identifiera alla mikrober från alla de biologiska rikena. Nukleinsyrebaserade diagnostiska metoder har märkbart förbättrats över de senaste årtionden. Nya tekniker erbjuder utökad sensitivitet, selektivitet, sänkta kostnader och parallella analyser av patient prover. Dock är de flesta metoderna begränsade till standardiserade laboratoriemiljöer. För att konstruera en väl fungerande diagnostisk fältutrustning för användning i problem områden, behöver världsledande tekniker identifieras och kombineras. Fokuseringsområdet för denna doktorsavhandling har varit att utveckla och utföra nukleinsyrebaserade metoder för patogen diagnostik. Metoder och experimentella utförande applicerades på två distinkta system i) sökning av antibiotika resistens relaterade mutationer i den patogena bakterien Neisseria gonorrhoeae och ii) genotypning av det cancer orsakande Humana Papillomaviruset (HPV). Den första delen av studien inriktade sig mot utveckling av snabba, direkta och multiplexa Pyrosekvenserings baserade nukleinsyreanalyser. Med förbättrad provprepareringsmetodologi kunde vi detektera multipla HPV infektioner med högre sensitivitet än vad tidigare beskrivits med liknande metodologi. Den andra delen av studien fokuserades på multiplexa nukleinsyre amplifikationer med “Molecular Inversion Probe” tekniken med sista steg Pyrosekvenserings analys. “PathogenMip assay” erbjuder ett komplett detektionsprotokoll för alla kända patogena organismer. Vi introducerar även den nya “Connector Inversion Probe”, en “Padlock Probe” kapabel att genomföra kompletta gap fyllningar för multiplex nukleinsyre amplifiering.QC 2010062

    Linking Geology and Geotechnical Engineering in Karst: The Qatar Geologic Mapping Project

    Get PDF
    During a time of expanding population and aging urban infrastructure, it is critical to have accurate geotechnical and geological information to enable adequate design and make appropriate provisions for construction. This is especially important in karst terrains that are prone to sinkhole hazards and groundwater quantity and quality issues. The State of Qatar in the Middle East, a country underlain by carbonate and evaporite rocks and having abundant karst features, has recognized the significance of reliable and accurate geological and geotechnical information and has undertaken a project to develop a robust geotechnical relational database and prepare geologic and thematic digital maps. These products will support planning, design, and decision-making processes related to urban infrastructure development in the rapidly growing State and be particularly useful in the early stages of geotechnical investigations. The U.S. Geological Survey (USGS), Gannett Fleming, Inc., and the Qatar Ministry of Municipality and Environment (MME) have partnered to design a geologic mapping project that will merge geological and geotechnical information to develop a framework to model the geology, karst, and resources important to support growth in the State. The Qatar Geologic Mapping Project (QGMP) has a mission to integrate sound geoscience data for the State of Qatar to address societal, environmental and educational needs that include water and mineral resources management and natural hazards reduction
    corecore