4,179 research outputs found
Surface-decorated ZnO nanoparticles and ZnO nanocoating on electrospun polymeric nanofibers by atomic layer deposition for flexible photocatalytic nanofibrous membranes
Cataloged from PDF version of article.Electrospun polymeric nanofibers were either surface-decorated with zinc oxide (ZnO) nanoparticles or coated with a continuous ZnO thin film with a precise thickness (similar to 27 nm) via atomic layer deposition (ALD) for the fabrication of flexible photocatalytic nanofibrous membranes
Measurements of the Rate Capability of Various Resistive Plate Chambers
Resistive Plate Chambers (RPCs) exhibit a significant loss of efficiency for
the detection of particles, when subjected to high particle fluxes. This rate
limitation is related to the usually high resistivity of the resistive plates
used in their construction. This paper reports on measurements of the
performance of three different glass RPC designs featuring a different total
resistance of the resistive plates. The measurements were performed with 120
GeV protons at varying beam intensitie
Template-based synthesis of aluminum nitride hollow Nanofibers via plasma-enhanced atomic layer deposition
Cataloged from PDF version of article.Aluminum nitride (AlN) hollow nanofibers were synthesized via plasma-enhanced atomic layer deposition using sacrificial electrospun polymeric nanofiber templates having different average fiber diameters (~70, ~330, and ~740 nm). Depositions were carried out at 200°C using trimethylaluminum and ammonia precursors. AlN-coated nanofibers were calcined subsequently at 500°C for 2 h to remove the sacrificial polymeric nanofiber template. SEM studies have shown that there is a critical wall thickness value depending on the template's average fiber diameter for AlN hollow nanofibers to preserve their shapes after the template has been removed by calcination. Best morphologies were observed for AlN hollow nanofibers prepared by depositing 800 cycles (corresponding to ~69 nm) on nanofiber templates having ~330 nm average fiber diameter. TEM images indicated uniform wall thicknesses of ~65 nm along the fiber axes for samples prepared using templates having ~70 and ~330 nm average fiber diameters. Synthesized AlN hollow nanofibers were polycrystalline with a hexagonal crystal structure as determined by high-resolution TEM and selected area electron diffraction. Chemical compositions of coated and calcined samples were studied using X-ray photoelectron spectroscopy (XPS). High-resolution XPS spectra confirmed the presence of AlN. © 2012 The American Ceramic Societ
Polymer-inorganic core-shell nanofibers by electrospinning and atomic layer deposition: flexible nylon-znO core-shell nanofiber mats and their photocatalytic activity
Cataloged from PDF version of article.Polymer-inorganic core-shell nanofibers were produced by two-step approach; electrospinning and atomic layer deposition (ALD). First, nylon 6,6 (polymeric core) nanofibers were obtained by electrospinning, and then zinc oxide (ZnO) (inorganic shell) with precise thickness control was deposited onto electrospun nylon 6,6 nanofibers using ALD technique. The bead-free and uniform nylon 6,6 nanofibers having different average fiber diameters (∼80, ∼240 and ∼650 nm) were achieved by using two different solvent systems and polymer concentrations. ZnO layer about 90 nm, having uniform thickness around the fiber structure, was successfully deposited onto the nylon 6,6 nanofibers. Because of the low deposition temperature utilized (200 °C), ALD process did not deform the polymeric fiber structure, and highly conformal ZnO layer with precise thickness and composition over a large scale were accomplished regardless of the differences in fiber diameters. ZnO shell layer was found to have a polycrystalline nature with hexagonal wurtzite structure. The core-shell nylon 6,6-ZnO nanofiber mats were flexible because of the polymeric core component. Photocatalytic activity of the core-shell nylon 6,6-ZnO nanofiber mats were tested by following the photocatalytic decomposition of rhodamine-B dye. The nylon 6,6-ZnO nanofiber mat, having thinner fiber diameter, has shown better photocatalytic efficiency due to higher surface area of this sample. These nylon 6,6-ZnO nanofiber mats have also shown structural stability and kept their photocatalytic activity for the second cycle test. Our findings suggest that core-shell nylon 6,6-ZnO nanofiber mat can be a very good candidate as a filter material for water purification and organic waste treatment because of their photocatalytic properties along with structural flexibility and stability. © 2012 American Chemical Society
Fabrication of AlN/BN bishell hollow nanofibers by electrospinning and atomic layer deposition
Cataloged from PDF version of article.Aluminum nitride (AlN)/boron nitride (BN) bishell hollow nanofibers (HNFs) have been fabricated by successive atomic layer deposition (ALD) of AlN and sequential chemical vapor deposition (CVD) of BN on electrospun polymeric nanofibrous template. A four-step fabrication process was utilized: (i) fabrication of polymeric (nylon 6,6) nanofibers via electrospinning, (ii) hollow cathode plasma-assisted ALD of AlN at 100 degrees C onto electrospun polymeric nanofibers, (iii) calcination at 500 degrees C for 2 h in order to remove the polymeric template, and (iv) sequential CVD growth of BN at 450 degrees C. AlN/BN HNFs have been characterized for their chemical composition, surface morphology, crystal structure, and internal nanostructure using X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and selected area electron diffraction. Measurements confirmed the presence of crystalline hexagonal BN and AlN within the three dimensional (3D) network of bishell HNFs with relatively low impurity content. In contrast to the smooth surface of the inner AlN layer, outer BN coating showed a highly rough 3D morphology in the form of BN nano-needle crystallites. It is shown that the combination of electrospinning and plasma-assisted low-temperature ALD/CVD can produce highly controlled multi-layered bishell nitride ceramic hollow nanostructures. While electrospinning enables easy fabrication of nanofibrous template, self-limiting reactions of plasma-assisted ALD and sequential CVD provide control over the wall thicknesses of AlN and BN layers with sub-nanometer accuracy. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License
Fabrication of flexible polymer-GaN core-shell nanofibers by the combination of electrospinning and hollow cathode plasma-assisted atomic layer deposition
Here we demonstrate the combination of electrospinning and hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD) processes by fabricating flexible polymer-GaN organic-inorganic core-shell nanofibers at a processing temperature much lower than that needed for the preparation of conventional GaN ceramic nanofibers. Polymer-GaN organic-inorganic core-shell nanofibers fabricated by the HCPA-ALD of GaN on electrospun polymeric (nylon 6,6) nanofibers at 200 °C were characterized in detail using electron microscopy, energy dispersive X-ray analysis, selected area electron diffraction, X-ray diffraction, X-ray photoelectron spectroscopy, photoluminescence measurements, and dynamic mechanical analysis. Although transmission electron microscopy studies indicated that the process parameters should be further optimized for obtaining ultimate uniformity and conformality on these high surface area 3D substrates, the HCPA-ALD process resulted in a ∼28 nm thick polycrystalline wurtzite GaN layer on polymeric nanofibers of an average fiber diameter of ∼70 nm. Having a flexible polymeric core and low processing temperature, these core-shell semiconducting nanofibers might have the potential to substitute brittle ceramic GaN nanofibers, which have already been shown to be high performance materials for various electronic and optoelectronic applications. This journal is © The Royal Society of Chemistry
Template-based synthesis of AlN hollow nanofibers via plasma-enhanced atomic layer deposition
Aluminum nitride (AlN) hollow nanofibers were synthesized by depositing conformai thin films via plasma-enhanced atomic layer deposition on sacrificial electrospun nylon 66 nanofiber templates having different average fiber diameters. Scanning electron microscopy studies have shown that there is a critical wall thickness-to-inner diameter ratio for these nanostructures to preserve their shapes after the polymeric template has been removed by calcination. Best morphologies were observed for AlN hollow nanofibers prepared by depositing 800 cycles on templates having ∼330 nm average fiber diameter. Al 2p high resolution XPS subpeaks located at 73.5 ± 0.2 eV confirmed the presence of AlN for coated and calcinated samples. Transmission electron microscopy (TEM) images indicated uniform wall thicknesses along the fiber axes. Synthesized AlN hollow nanofibers were polycrystalline with a hexagonal crystal structure as determined by high resolution TEM and selected area electron diffraction
Fabrication of hafnia hollow nanofibers by atomic layer deposition using electrospun nanofiber templates
Hafnia (HfO2) hollow nanofibers (HNs) were synthesized by atomic layer deposition (ALD) using electrospun nylon 6,6 nanofibers as templates. HfO2 layers were deposited on polymeric nanofibers at 200 °C by alternating reactant exposures of tetrakis(dimethylamido)hafnium and water. Polymeric nanofiber templates were subsequently removed by an ex situ calcination process at 500 °C under air ambient. Morphological and structural characterizations of the HN samples were conducted by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. Freestanding network of HfO2 HNs was found to be polycrystalline with a monoclinic crystal structure. Elemental composition and chemical bonding states of the resulting HfO2 HNs were studied by using X-ray photoelectron spectroscopy. The presence of HfO2 was evidenced by high resolution scans of Hf 4f and O 1s with binding energies of 16.3-17.9 and 529.6 eV, respectively. Combination of electrospinning and ALD processes provided an opportunity to precisely control both diameter and wall thickness of the synthesized HfO2 HNs. © 2013 Elsevier B.V. All rights reserved
ZnO nanostructures on electrospun nanofibers by atomic layer deposition/hydrothermal growth and their photocatalytic activity
A hierarchy of nanostructured-ZnO was fabricated on the electrospun nanofibers by atomic layer deposition (ALD) and hydrothermal growth, subsequently. Firstly, we produced poly(acrylonitrile) (PAN) nanofibers via electrospinning, then ALD process provided a highly uniform and conformai coating of polycrystalline ZnO with a precise control on the thickness (50 nm). In the last step, this ZnO coating depicting dominant oxygen vacancies and significant grain boundaries was used as a seed on which single crystalline ZnO nanoneedles (average diameter and length of ∼25 nm and ∼600 nm, respectively) with high optical quality were hydrothermally grown. The detailed morphological and structural studies were performed on the resulting nanofibers, and the photocatalytic activity (PCA) was tested with reference to the degradation of methylene blue. The results of PCA were discussed in conjunction with photoluminescence response. The nanoneedle structures supported the vectorial transport of photo-charge carriers, which is crucial for high catalytic activity. The enhanced PCA, structural stability and reusability of the PAN/ZnO nanoneedles indicated that this hierarchical structure is a potential candidate for waste water treatment. © 2014 Materials Research Society
Surface ionic states and structure of titanate nanotubes
Here we present an investigation on Zn-Ti-O ternary (zinc titanate) nanostructures which were prepared by a combination of electrospinning and atomic layer deposition. Depending on the ZnO and TiO2 molar ratio, two titanates and one mix phased compound were synthesized by varying the post-annealing temperatures. Specifically Zn2TiO4, ZnTiO3 and ZnO/TiO2 nanostructures were fabricated via thermal treatments (900, 700, 800 °C, respectively). Structural studies unveiled the titanate phase of the nanostructures. Furthermore, the ionic states of the titanate nanostructures on the surface are revealed to be Ti3+ and Zn2+. Spin-orbit splitting of Zn2p and Ti2p doublets were, however, not identical for all titanates which vary from 23.09-23.10 eV and 5.67-5.69 eV respectively. Oxygen vacancies were found on the surface of all titanates. The valance band region was analyzed for Zn3d, Ti3p, O2s and O2p and their hybridization, while the edge (below Fermi level) was determined to be at 2.14 eV, 2.00 eV and 1.99 eV for Zn2TiO4, ZnTiO3 and ZnO/TiO2 respectively. © The Royal Society of Chemistry
- …