899 research outputs found

    Emergence of a measurement basis in atom-photon scattering

    Full text link
    The process of quantum measurement has been a long standing source of debate. A measurement is postulated to collapse a wavefunction onto one of the states of a predetermined set - the measurement basis. This basis origin is not specified within quantum mechanics. According to the theory of decohernce, a measurement basis is singled out by the nature of coupling of a quantum system to its environment. Here we show how a measurement basis emerges in the evolution of the electronic spin of a single trapped atomic ion due to spontaneous photon scattering. Using quantum process tomography we visualize the projection of all spin directions, onto this basis, as a photon is scattered. These basis spin states are found to be aligned with the scattered photon propagation direction. In accordance with decohernce theory, they are subjected to a minimal increase in entropy due to the photon scattering, while, orthogonal states become fully mixed and their entropy is maximally increased. Moreover, we show that detection of the scattered photon polarization measures the spin state of the ion, in the emerging basis, with high fidelity. Lastly, we show that while photon scattering entangles all superpositions of pointer states with the scattered photon polarization, the measurement-basis states themselves remain classically correlated with it. Our findings show that photon scattering by atomic spin superpositions fulfils all the requirements from a quantum measurement process

    Ruthenium complexes with lumazine derivatives: structural, electrochemical, computational and radical scavenging studies

    Get PDF
    In this research study, the formation and characterization of new ruthenium(II) and (III) complexes encompassing multidentate ligands derived from 6-acetyl-1,3, 7-trimethyllumazine (almz) are reported. The 1:1 molar coordination reactions of trans-[RuCl2(PPh3)3] with N-1-[1,3, 7-trimethyllumazine]benzohydride (bzlmz) and 6-(N-methyloxime)- 1,3,7-trimethyllumazine (ohlmz) formed a diamagnetic ruthenium(II) complex, cis-[RuCl2(bzlmz)(PPh3)] (1), and paramagnetic complex, cis-[RuIIICl2(olmz)(PPh3)] (2) [Holmz = 6-(N-hydroxy-N0-methylamino)-1,3,7-trimethyllumazine], respectively. These ruthenium complexes were characterized via physico-chemical and spectroscopic methods. Structural elucidations of the metal complexes were confirmed using single crystal X-ray analysis. The redox properties of the metal complexes were investigated via cyclic voltammetry. Electron spin resonance spectroscopy confirmed the presence of a paramagnetic metal centre in 2. The radical scavenging activities of the metal complexes were explored towards the DPPH and NO radicals. Quantum calculations at the density functional theory level provided insight into the interpretation of the IR and UV–Vis experimental spectra of 1

    Coordination of di- and triimine ligands at ruthenium(II) and ruthenium(III) centers: structural, electrochemical and radical scavenging studies

    Get PDF
    Herein, we explore the coordination of di- and triimine chelators at ruthenium(II) and ruthenium(III) centers. The reactions of 2,6-bis-((4- tetrahydropyranimino)methyl)pyridine (thppy), N1,N2-bis((3-chromone) methylene)benzene-1,2-diamine (chb), and tris-((1H-pyrrol-2-ylmethylene) ethane)amine (H3pym) with trans-[RuIICl2(PPh3)3] afforded the diamagnetic ruthenium(II) complex cis-[RuCl2(thppy)(PPh3)] (1) and the paramagnetic complexes [mer-Ru2(μ-chb)Cl6(PPh3)2] (2), and [Ru(pym)] (3), respectively. The complexes were characterized by IR, NMR, and UV–vis spectroscopy and molar conductivity measurements. The structures were confirmed by single crystal X-ray diffraction studies. The redox properties of the metal complexes were probed via cyclic- and squarewave voltammetry. Finally, the radical scavenging capabilities of the metal complexes towards the NO and 2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl (DPPH) radicals were investigate

    Quantum control of 88^{88}Sr+^+ in a miniature linear Paul trap

    Full text link
    We report on the construction and characterization of an apparatus for quantum information experiments using 88^{88}Sr+^+ ions. A miniature linear radio-frequency (rf) Paul trap was designed and built. Trap frequencies above 1 MHz in all directions are obtained with 50 V on the trap end-caps and less than 1 W of rf power. We encode a quantum bit (qubit) in the two spin states of the S1/2S_{1/2} electronic ground-state of the ion. We constructed all the necessary laser sources for laser cooling and full coherent manipulation of the ions' external and internal states. Oscillating magnetic fields are used for coherent spin rotations. High-fidelity readout as well as a coherence time of 2.5 ms are demonstrated. Following resolved sideband cooling the average axial vibrational quanta of a single trapped ion is nˉ=0.05\bar n=0.05 and a heating rate of nˉ˙=0.016\dot{\bar n}=0.016 ms1^{-1} is measured.Comment: 8 pages,9 figure

    High-fidelity state detection and tomography of a single ion Zeeman qubit

    Full text link
    We demonstrate high-fidelity Zeeman qubit state detection in a single trapped 88 Sr+ ion. Qubit readout is performed by shelving one of the qubit states to a metastable level using a narrow linewidth diode laser at 674 nm followed by state-selective fluorescence detection. The average fidelity reached for the readout of the qubit state is 0.9989(1). We then measure the fidelity of state tomography, averaged over all possible single-qubit states, which is 0.9979(2). We also fully characterize the detection process using quantum process tomography. This readout fidelity is compatible with recent estimates of the detection error-threshold required for fault-tolerant computation, whereas high-fidelity state tomography opens the way for high-precision quantum process tomography

    Search for cold gas in z>2 damped Lyman-alpha systems: 21-cm and H_2 absorption

    Full text link
    (Abridged) We present the results of a systematic GBT and GMRT survey for 21-cm absorption in a sample of 10 DLAs at 2<z_abs<3.4. Analysis of L-band VLBA images of the background QSOs are also presented. We detect 21-cm absorption in only one DLA (at z_abs = 3.1745 towards J1337+3152). Combining our data with the data from the literature (a sample of 28 DLAs) and assuming the measured core fraction at milliarcsecond scale to represent the gas covering factor, we find that the HI gas in DLAs at z> 2 is predominantly constituted by WNM. The detection rate of 21-cm absorption seems to be higher for systems with higher N(HI) or metallicity. However, no clear correlation is found between the integrated 21-cm optical depth (or spin temperature) and either N(HI), metallicity or velocity spread of the low ionization species. There are 13 DLAs in our sample for which high resolution optical spectra covering the expected wavelength range of H_2 absorption are available. We report the detection of H_2 molecules in the z_abs = 3.3871 21-cm absorber towards J0203+1134 (PKS 0201+113). In 8 cases, neither H_2 nor 21-cm absorption are detected. The lack of 21-cm and H_2 absorption in these systems can be explained if most of the HI in these DLAs originate from low density high temperature gas. In one case we have a DLA with 21-cm absorption not showing H_2 absorption. In two cases, both species are detected but do not originate from the same velocity component. In the remaining 2 cases 21-cm absorption is not detected despite the presence of H_2 with evidence for the presence of cold gas. All this is consistent with the idea that the H_2 components seen in DLAs are compact (with sizes of < 15 pc) and contain only a small fraction (i.e typically <10%) of the total N(HI) measured in the DLAs.Comment: Accepted for publication in MNRA

    Detection of 21-cm, H2 and Deuterium absorption at z>3 along the line-of-sight to J1337+3152

    Full text link
    We report the detection of 21-cm and H2 absorption lines in the same DLA system (log N(HI)=21.36+-0.10) at zabs=3.17447 towards SDSSJ133724+315254 (z=3.174). We estimate the spin temperature of the gas to be, Ts~600 K, intermediate between the expected values for cold and warm neutral media. This suggests that the HI absorption originates from a mixture of different phases. The total molecular fraction is low, f=10^-7, and H2 rotational level populations are not in equilibrium. The average abundance of the alpha-elements is, [S/H]=-1.45. N and Fe are found underabundant with respect to alpha-elements by ~1.0 dex and ~0.5 dex respectively. Using photoionization models we conclude that the gas is located more than 270 kpc away from the QSO. While the position of 21-cm absorption line coincides with the H2 velocity profile, their centroid are shifted by 2.7+-1.0 km/s from each other. However, the position of the strongest metal absorption component matches the position of the 21-cm absorption line within 0.5 km/s. From this, we constrain the variation of the combination of fundamental constants x=alpha^2 Gp/mu, Delta x/x=-(1.7+-1.7)x10^-6. This system is unique as we can at the same time have an independent constrain on mu using H2 lines. However only Werner band absorption lines are seen and the range of sensitivity coefficients is too narrow to provide a stringent constraint: Delta mu/mu <= 4.0x10^-4. The VLT/UVES spectrum reveals another DLA at zabs=3.16768 with log N(HI)=20.41+-0.15 and low metallicity, [Si/H]=-2.68+-0.11. We derive log N(DI)/N(HI)=-(4.93+-0.15) in this system. This is a factor of two smaller than the value expected from the best fitted value of Omega_b from the WMAP 5 yr data. This confirms the presence of astration of deuterium even at very low metallicity. [abridged]Comment: 14 pages, 11 figures, 4 tables, accepted for publication in MNRA

    Lifeworld Inc. : and what to do about it

    Get PDF
    Can we detect changes in the way that the world turns up as they turn up? This paper makes such an attempt. The first part of the paper argues that a wide-ranging change is occurring in the ontological preconditions of Euro-American cultures, based in reworking what and how an event is produced. Driven by the security – entertainment complex, the aim is to mass produce phenomenological encounter: Lifeworld Inc as I call it. Swimming in a sea of data, such an aim requires the construction of just enough authenticity over and over again. In the second part of the paper, I go on to argue that this new world requires a different kind of social science, one that is experimental in its orientation—just as Lifeworld Inc is—but with a mission to provoke awareness in untoward ways in order to produce new means of association. Only thus, or so I argue, can social science add to the world we are now beginning to live in

    Hyperpolarized Long-T1 Silicon Nanoparticles for Magnetic Resonance Imaging

    Get PDF
    Silicon nanoparticles are experimentally investigated as a potential hyperpolarized, targetable MRI imaging agent. Nuclear T_1 times at room temperature for a variety of Si nanoparticles are found to be remarkably long (10^2 to 10^4 s) - roughly consistent with predictions of a core-shell diffusion model - allowing them to be transported, administered and imaged on practical time scales without significant loss of polarization. We also report surface functionalization of Si nanoparticles, comparable to approaches used in other biologically targeted nanoparticle systems.Comment: supporting material here: http://marcuslab.harvard.edu/Aptekar_hyper1_sup.pd
    corecore