24 research outputs found

    Inhibitory activities of Thai medicinal plants against herpes simplex type 1, poliovirus type 1, and measles virus

    Get PDF
    Forty-eight ethanol- and 43 water-extracts of 49 traditional Thai medicines were evaluated for antiviral activities by a plaque reduction assay. For preliminary characterization of the mode of their antiviral action, poliovirus type 1, measles virus and herpes simplex virus type 1 (HSV-1) that are different in nucleic acid component and enveloped structure were used in this study. Fifty-two, 28 and 29 extracts exhibited inhibitory activities against poliovirus, measles virus and HSV-1, respectively. Of 29 extracts with anti-HSV-1 activities, the inhibitory activities of Rhinacanthus nasutus (leaf), Terminalia citrina (fruit) and Thevetia peruviana (leaf) were observed in both ethanol and water extracts. The ethanol extracts of Derris scandens (leaf) and Plumbago indica (leaf) and the water extract of Capsicum frutescens (fruit) were active against only HSV-1, suggesting the mechanism of their antiviral action likely unique to HSV-1 but neither poliovirus nor measles virus. Contrarily, 26 extracts displayed inhibitory activities against poliovirus and/or measles virus. These findings suggest that the 29 extracts from traditional Thai medicines are potential candidates for anti-HSV agents. 49種のタイ伝統薬物から作製した48のエタノールエキス,43の水エキスに対する抗ウイルス活性をプラーク減少法で検索した。本研究では,核酸やエンベロープ構造の異なるポリオウイルス1型,麻疹ウイルス,単純ヘルペスウイルス1型に対して検討を行なった。その結果ポリオウイルス1型に対しては52種,麻疹ウイルスには28種,単純ヘルペスウイルス1型には29種のエキスが阻害活性を示した。単純ヘルペス1型に有効であった29種の中では,Rhinacanthus nasutus(葉),Terminalia citrina(果実),Thevetia peruviana(葉)はエタノール,水の両エキスで阻害作用を示した。Derris scandens(葉),Plumbago indica(葉)およびCapsicum frutescens(果実)のエタノールエキスは単純ヘルペスウイルス1型にのみ活性があった。このことはポリオウイルスや麻疹ウイルスには無効で,単純ヘルペス1型のみに特異的に有効であることを示唆している。一方,26種のエキスはポリオウイルスあるいは麻疹ウイルス,また両方に有効であった。これらの結果はタイ伝統薬物からの29のエキスが抗ヘルペス剤として有力な候補となることを示している

    Composition of eggplant cultivars of the Occidental type and implications for the improvement of nutritional and functional quality

    Full text link
    We have investigated the diversity for composition in seven eggplant (Solanum melongena) cultivars of the Occidental type. The results show that, with the exception of moisture content and pH, there is a wide diversity for all the analysed traits. Protein content was variable, but generally low. The content in available carbohydrates ranged between 2.99 and 4.19mg100g(-1), and the main soluble sugars were glucose and fructose. The fibre content was the most variable trait. In all cases, the dehydroascorbic acid content was higher than the ascorbic acid content. Total phenolics content was on average thirty-nine-fold higher than vitamin C content. Multivariate analysis showed that accessions from the black and striped groups presented a similar composition profile, while the white and pickling fruits were very distinct. The pickling eggplant H11 is identified as the best source for improving the nutritional and functional properties of Occidental eggplants.This work was partially financed by the Ministerio de Ciencia y Tecnologia (AGL2009-07257 and AGL2012-34213).San José, R.; Sánchez Mata, MDC.; Cámara, MM.; Prohens Tomás, J. (2013). Composition of eggplant cultivars of the Occidental type and implications for the improvement of nutritional and functional quality. International Journal of Food Science and Technology. 48(12):2490-2499. doi:10.1111/ijfs.12240S249024994812Akanitapichat, P., Phraibung, K., Nuchklang, K., & Prompitakkul, S. (2010). Antioxidant and hepatoprotective activities of five eggplant varieties. Food and Chemical Toxicology, 48(10), 3017-3021. doi:10.1016/j.fct.2010.07.045Atkinson, C. J., Nestby, R., Ford, Y. Y., & Dodds, P. A. A. (2005). Enhancing beneficial antioxidants in fruits: A plant physiological perspective. BioFactors, 23(4), 229-234. doi:10.1002/biof.5520230408Boo, H., Kim, H., & Lee, H. (2010). Changes in Sugar Content and Sucrose Synthase Enzymes during Fruit Growth in Eggplant (Solanum melongena L.) Grown on Different Polyethylene Mulches. HortScience, 45(5), 775-777. doi:10.21273/hortsci.45.5.775Cao, G., Sofic, E., & Prior, R. L. (1996). Antioxidant Capacity of Tea and Common Vegetables. Journal of Agricultural and Food Chemistry, 44(11), 3426-3431. doi:10.1021/jf9602535COMAN, C., RUGINA, O. D., & SOCACIU, C. (2012). Plants and Natural Compounds with Antidiabetic Action. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40(1), 314. doi:10.15835/nbha4017205Concellón, A., Añón, M. C., & Chaves, A. R. (2004). Characterization and changes in polyphenol oxidase from eggplant fruit (Solanum melongena L.) during storage at low temperature. Food Chemistry, 88(1), 17-24. doi:10.1016/j.foodchem.2004.01.017Concellón, A., Zaro, M. J., Chaves, A. R., & Vicente, A. R. (2012). Changes in quality and phenolic antioxidants in dark purple American eggplant (Solanum melongena L. cv. Lucía) as affected by storage at 0°C and 10°C. Postharvest Biology and Technology, 66, 35-41. doi:10.1016/j.postharvbio.2011.12.003Das, S., Raychaudhuri, U., Falchi, M., Bertelli, A., Braga, P. C., & Das, D. K. (2011). Cardioprotective properties of raw and cooked eggplant (Solanum melongena L). Food & Function, 2(7), 395. doi:10.1039/c1fo10048cDaunay, M.-C. (2008). Eggplant. Vegetables II, 163-220. doi:10.1007/978-0-387-74110-9_5Dogan, M., Arslan, O., & Dogan, S. (2002). Substrate specificity, heat inactivation and inhibition of polyphenol oxidase from different aubergine cultivars. International Journal of Food Science and Technology, 37(4), 415-423. doi:10.1046/j.1365-2621.2002.00580.xEggink, P. M., Maliepaard, C., Tikunov, Y., Haanstra, J. P. W., Bovy, A. G., & Visser, R. G. F. (2012). A taste of sweet pepper: Volatile and non-volatile chemical composition of fresh sweet pepper (Capsicum annuum) in relation to sensory evaluation of taste. Food Chemistry, 132(1), 301-310. doi:10.1016/j.foodchem.2011.10.081Esteban, R. M., Molla, E., Villarroya, M. B., & Lopez-Andreu, F. J. (1989). Changes in the chemical composition of eggplant fruits during storage. Scientia Horticulturae, 41(1-2), 19-25. doi:10.1016/0304-4238(89)90045-9Flick, G. J., Burnette, F. S., Aung, L. H., Ory, R. L., & St. Angelo, A. J. (1978). Chemical composition and biochemical properties of mirlitons (Sechium edule) and purple, green, and white eggplants (Solanum melongena). Journal of Agricultural and Food Chemistry, 26(5), 1000-1005. doi:10.1021/jf60219a045Hanson, P. M., Yang, R.-Y., Tsou, S. C. S., Ledesma, D., Engle, L., & Lee, T.-C. (2006). Diversity in eggplant (Solanum melongena) for superoxide scavenging activity, total phenolics, and ascorbic acid. Journal of Food Composition and Analysis, 19(6-7), 594-600. doi:10.1016/j.jfca.2006.03.001Hernández-Hernández, O., Ruiz-Aceituno, L., Sanz, M. L., & Martínez-Castro, I. (2011). Determination of Free Inositols and Other Low Molecular Weight Carbohydrates in Vegetables. Journal of Agricultural and Food Chemistry, 59(6), 2451-2455. doi:10.1021/jf1045552Hurtado, M., Vilanova, S., Plazas, M., Gramazio, P., Fonseka, H. H., Fonseka, R., & Prohens, J. (2012). Diversity and Relationships of Eggplants from Three Geographically Distant Secondary Centers of Diversity. PLoS ONE, 7(7), e41748. doi:10.1371/journal.pone.0041748Jenkins, D. J. A. (2003). Effects of a Dietary Portfolio of Cholesterol-Lowering Foods vs Lovastatin on Serum Lipids and C-Reactive Protein. JAMA, 290(4), 502. doi:10.1001/jama.290.4.502Kim, D.-O., Lee, K. W., Lee, H. J., & Lee, C. Y. (2002). Vitamin C Equivalent Antioxidant Capacity (VCEAC) of Phenolic Phytochemicals. Journal of Agricultural and Food Chemistry, 50(13), 3713-3717. doi:10.1021/jf020071cKwon, Y.-I., Apostolidis, E., & Shetty, K. (2008). In vitro studies of eggplant (Solanum melongena) phenolics as inhibitors of key enzymes relevant for type 2 diabetes and hypertension. Bioresource Technology, 99(8), 2981-2988. doi:10.1016/j.biortech.2007.06.035Lee, S. K., & Kader, A. A. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology, 20(3), 207-220. doi:10.1016/s0925-5214(00)00133-2Levin, I., Gilboa, N., Yeselson, E., Shen, S., & Schaffer, A. A. (2000). Fgr, a major locus that modulates the fructose to glucose ratio in mature tomato fruits. Theoretical and Applied Genetics, 100(2), 256-262. doi:10.1007/s001220050034Lo Scalzo, R., Fibiani, M., Mennella, G., Rotino, G. L., Dal Sasso, M., Culici, M., … Braga, P. C. (2010). Thermal Treatment of Eggplant (Solanum melongenaL.) Increases the Antioxidant Content and the Inhibitory Effect on Human Neutrophil Burst. Journal of Agricultural and Food Chemistry, 58(6), 3371-3379. doi:10.1021/jf903881sLuengwilai, K., Tananuwong, K., Shoemaker, C. F., & Beckles, D. M. (2010). Starch Molecular Structure Shows Little Association with Fruit Physiology and Starch Metabolism in Tomato. Journal of Agricultural and Food Chemistry, 58(2), 1275-1282. doi:10.1021/jf9032393Luthria, D. L. (2012). A simplified UV spectral scan method for the estimation of phenolic acids and antioxidant capacity in eggplant pulp extracts. Journal of Functional Foods, 4(1), 238-242. doi:10.1016/j.jff.2011.11.002Mennella, G., Rotino, G. L., Fibiani, M., D’Alessandro, A., Francese, G., Toppino, L., … Lo Scalzo, R. (2010). Characterization of Health-Related Compounds in Eggplant (Solanum melongenaL.) Lines Derived from Introgression of Allied Species. Journal of Agricultural and Food Chemistry, 58(13), 7597-7603. doi:10.1021/jf101004zMeyer, R. S., Karol, K. G., Little, D. P., Nee, M. H., & Litt, A. (2012). Phylogeographic relationships among Asian eggplants and new perspectives on eggplant domestication. Molecular Phylogenetics and Evolution, 63(3), 685-701. doi:10.1016/j.ympev.2012.02.006Muñoz-Falcón, J. E., Prohens, J., Vilanova, S., & Nuez, F. (2008). Characterization, diversity, and relationships of the Spanish striped (Listada) eggplants: a model for the enhancement and protection of local heirlooms. Euphytica, 164(2), 405-419. doi:10.1007/s10681-008-9688-3Muñoz-Falcón, J. E., Prohens, J., Vilanova, S., & Nuez, F. (2009). Diversity in commercial varieties and landraces of black eggplants and implications for broadening the breeders’ gene pool. Annals of Applied Biology, 154(3), 453-465. doi:10.1111/j.1744-7348.2009.00314.xNicolas, J. J., Richard‐Forget, F. C., Goupy, P. M., Amiot, M., & Aubert, S. Y. (1994). Enzymatic browning reactions in apple and apple products. Critical Reviews in Food Science and Nutrition, 34(2), 109-157. doi:10.1080/10408399409527653Nookaraju, A., Upadhyaya, C. P., Pandey, S. K., Young, K. E., Hong, S. J., Park, S. K., & Park, S. W. (2010). Molecular approaches for enhancing sweetness in fruits and vegetables. Scientia Horticulturae, 127(1), 1-15. doi:10.1016/j.scienta.2010.09.014Perez, P. M. P., & Germani, R. (2007). Elaboração de biscoitos tipo salgado, com alto teor de fibra alimentar, utilizando farinha de berinjela (Solanum melongena, L.). Ciência e Tecnologia de Alimentos, 27(1), 186-192. doi:10.1590/s0101-20612007000100033Picha, D. (2006). HORTICULTURAL CROP QUALITY CHARACTERISTICS IMPORTANT IN INTERNATIONAL TRADE. Acta Horticulturae, (712), 423-426. doi:10.17660/actahortic.2006.712.49Prohens, J., Rodríguez-Burruezo, A., Raigón, M. D., & Nuez, F. (2007). Total Phenolic Concentration and Browning Susceptibility in a Collection of Different Varietal Types and Hybrids of Eggplant: Implications for Breeding for Higher Nutritional Quality and Reduced Browning. Journal of the American Society for Horticultural Science, 132(5), 638-646. doi:10.21273/jashs.132.5.638Prohens, J., Muñoz-Falcón, J. E., Rodríguez-Burruezo, A., Ribas, F., Castro, Á., & Nuez, F. (2009). ‘H15’, an Almagro-type Pickling Eggplant with High Yield and Reduced Prickliness. HortScience, 44(7), 2017-2019. doi:10.21273/hortsci.44.7.2017Raigón, M. D., Prohens, J., Muñoz-Falcón, J. E., & Nuez, F. (2008). Comparison of eggplant landraces and commercial varieties for fruit content of phenolics, minerals, dry matter and protein. Journal of Food Composition and Analysis, 21(5), 370-376. doi:10.1016/j.jfca.2008.03.006Raigón, M. D., Rodríguez-Burruezo, A., & Prohens, J. (2010). Effects of Organic and Conventional Cultivation Methods on Composition of Eggplant Fruits. Journal of Agricultural and Food Chemistry, 58(11), 6833-6840. doi:10.1021/jf904438nRawson, A., Patras, A., Tiwari, B. K., Noci, F., Koutchma, T., & Brunton, N. (2011). Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: Review of recent advances. Food Research International, 44(7), 1875-1887. doi:10.1016/j.foodres.2011.02.053Sánchez-Mata, M. C., Cámara-Hurtado, M., Díez-Marqués, C., & Torija-Isasa, M. E. (2000). Comparison of high-performance liquid chromatography and spectrofluorimetry for vitamin C analysis of green beans (Phaseolus vulgaris L.). European Food Research and Technology, 210(3), 220-225. doi:10.1007/pl00005516Sánchez-Mata, M. C., Cabrera Loera, R. D., Morales, P., Fernández-Ruiz, V., Cámara, M., Díez Marqués, C., … Tardío, J. (2011). Wild vegetables of the Mediterranean area as valuable sources of bioactive compounds. Genetic Resources and Crop Evolution, 59(3), 431-443. doi:10.1007/s10722-011-9693-6Stommel, J. R., & Whitaker, B. D. (2003). Phenolic Acid Content and Composition of Eggplant Fruit in a Germplasm Core Subset. Journal of the American Society for Horticultural Science, 128(5), 704-710. doi:10.21273/jashs.128.5.0704Sun-Waterhouse, D. (2011). The development of fruit-based functional foods targeting the health and wellness market: a review. International Journal of Food Science & Technology, 46(5), 899-920. doi:10.1111/j.1365-2621.2010.02499.xTodaro, A., Cavallaro, R., Argento, S., Branca, F., & Spagna, G. (2011). Study and Characterization of Polyphenol Oxidase from Eggplant (Solanum melongena L.). Journal of Agricultural and Food Chemistry, 59(20), 11244-11248. doi:10.1021/jf201862qTriantis, T., Stelakis, A., Dimotikali, D., & Papadopoulos, K. (2005). Investigations on the antioxidant activity of fruit and vegetable aqueous extracts on superoxide radical anion using chemiluminescence techniques. Analytica Chimica Acta, 536(1-2), 101-105. doi:10.1016/j.aca.2004.11.048TSUJIMURA, M., HIGASA, S., NAKAYAMA, K., YANAGISAWA, Y., IWAMOTO, S., & KAGAWA, Y. (2008). Vitamin C Activity of Dehydroascorbic Acid in Humans-Association between Changes in the Blood Vitamin C Concentration or Urinary Excretion after Oral Loading-. Journal of Nutritional Science and Vitaminology, 54(4), 315-320. doi:10.3177/jnsv.54.315Vilanova, S., Manzur, J. P., & Prohens, J. (2011). Development and characterization of genomic simple sequence repeat markers in eggplant and their application to the study of diversity and relationships in a collection of different cultivar types and origins. Molecular Breeding, 30(2), 647-660. doi:10.1007/s11032-011-9650-2Whitaker, B. D., & Stommel, J. R. (2003). Distribution of Hydroxycinnamic Acid Conjugates in Fruit of Commercial Eggplant (Solanum melongenaL.) Cultivars. Journal of Agricultural and Food Chemistry, 51(11), 3448-3454. doi:10.1021/jf026250bWills, R. B. H., Wimalasiri, P., & Greenfield, H. (1984). Dehydroascorbic acid levels in fresh fruit and vegetables in relation to total vitamin C activity. Journal of Agricultural and Food Chemistry, 32(4), 836-838. doi:10.1021/jf00124a03

    Diversity and relationships in key traits for functional and apparent quality in a collection of eggplant: fruit phenolics content, antioxidant activity, polyphenol oxidase activity, and browning

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Agricultural and Food Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work seehttp://dx.doi.org/10.1021/jf402429kEggplant (Solanum melongena) varieties with increased levels of phenolics in the fruit present enhanced functional quality, but may display greater fruit flesh browning. We evaluated 18 eggplant accessions for fruit total phenolics content, chlorogenic acid content, DPPH scavenging activity, polyphenol oxidase (PPO) activity, liquid extract browning, and fruit flesh browning. For all the traits we found a high diversity, with differences among accessions of up to 3.36-fold for fruit flesh browning. Variation in total content in phenolics and in chlorogenic acid content accounted only for 18.9% and 6.0% in the variation in fruit flesh browning, and PPO activity was not significantly correlated with fruit flesh browning. Liquid extract browning was highly correlated with chlorogenic acid content (r = 0.852). Principal components analysis (PCA) identified four groups of accessions with different profiles for the traits studied. Results suggest that it is possible to develop new eggplant varieties with improved functional and apparent quality.This project has been funded by Universitat Politecnica de Valencia through the grants SP20120681 and PAID-06-11 Nr. 2082, and by Ministerio de Economia y Competitividad Grant AGL2012-34213 (jointly funded by FEDER).Plazas Ávila, MDLO.; López Gresa, MP.; Vilanova Navarro, S.; Torres Vidal, C.; Hurtado Ricart, M.; Gramazio, P.; Andújar Pérez, I.... (2013). Diversity and relationships in key traits for functional and apparent quality in a collection of eggplant: fruit phenolics content, antioxidant activity, polyphenol oxidase activity, and browning. Journal of Agricultural and Food Chemistry. 61(37):8871-8879. https://doi.org/10.1021/jf402429kS88718879613

    Coding SNPs analysis highlights genetic relationships and evolution pattern in eggplant complexes

    Get PDF
    [EN] Brinjal (Solanum melongena), scarlet (S. aethiopicum) and gboma (S. macrocarpon) eggplants are three Old World domesticates. The genomic DNA of a collection of accessions belonging to the three cultivated species, along with a representation of various wild relatives, was characterized for the presence of single nucleotide polymorphisms (SNPs) using a genotype-by-sequencing approach. A total of 210 million useful reads were produced and were successfully aligned to the reference eggplant genome sequence. Out of the 75,399 polymorphic sites identified among the 76 entries in study, 12,859 were associated with coding sequence. A genetic relationships analysis, supported by the output of the FastSTRUCTURE software, identified four major sub-groups as present in the germplasm panel. The first of these clustered S. aethiopicum with its wild ancestor S. anguivi; the second, S. melongena, its wild progenitor S. insanum, and its relatives S. incanum, S. lichtensteinii and S. linneanum; the third, S. macrocarpon and its wild ancestor S. dasyphyllum; and the fourth, the New World species S. sisymbriifolium, S. torvum and S. elaeagnifolium. By applying a hierarchical FastSTRUCTURE analysis on partitioned data, it was also possible to resolve the ambiguous membership of the accessions of S. campylacanthum, S. violaceum, S. lidii, S. vespertilio and S. tomentsum, as well as to genetically differentiate the three species of New World Origin. A principal coordinates analysis performed both on the entire germplasm panel and also separately on the entries belonging to sub-groups revealed a clear separation among species, although not between each of the domesticates and their respective wild ancestors. There was no clear differentiation between either distinct cultivar groups or different geographical provenance. Adopting various approaches to analyze SNP variation provided support for interpretation of results. The genotyping-by-sequencing approach showed to be highly efficient for both quantifying genetic diversity and establishing genetic relationships among and within cultivated eggplants and their wild relatives. The relevance of these results to the evolution of eggplants, as well as to their genetic improvement, is discussed.This work has been funded in part by European Unions Horizon 2020 Research and Innovation Programme under grant agreement No 677379 (G2P-SOL project: Linking genetic resources, genomes and phenotypes of Solanaceous crops) and by Spanish Ministerio de Economia, Industria y Competitividad and Fondo Europeo de Desarrollo Regional (grant AGL2015-64755-R from MINECO/FEDER). Funding has also been received from the initiative "Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives", which is supported by the Government of Norway. This last project is managed by the Global Crop Diversity Trust with the Millennium Seed Bank of the Royal Botanic Gardens, Kew and implemented in partnership with national and international gene banks and plant breeding institutes around the world. For further information see the project website:http://www.cwrdiversity.org/. Pietro Gramazio is grateful to Universitat Politecnica de Valencia for a pre-doctoral (Programa FPI de la UPV-Subprograma 1/2013 call) contract. Mariola Plazas is grateful to Spanish Ministerio de Economia, Industria y Competitividad for a post-doctoral grant within the Santiago Grisolia Programme (FCJI-2015-24835). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Acquadro, A.; Barchi, L.; Gramazio, P.; Portis, E.; Vilanova Navarro, S.; Comino, C.; Plazas Ávila, MDLO.... (2017). Coding SNPs analysis highlights genetic relationships and evolution pattern in eggplant complexes. PLoS ONE. 12(7). https://doi.org/10.1371/journal.pone.0180774Se018077412
    corecore