8 research outputs found

    A review of ECG-based diagnosis support systems for obstructive sleep apnea

    Get PDF
    Humans need sleep. It is important for physical and psychological recreation. During sleep our consciousness is suspended or least altered. Hence, our ability to avoid or react to disturbances is reduced. These disturbances can come from external sources or from disorders within the body. Obstructive Sleep Apnea (OSA) is such a disorder. It is caused by obstruction of the upper airways which causes periods where the breathing ceases. In many cases, periods of reduced breathing, known as hypopnea, precede OSA events. The medical background of OSA is well understood, but the traditional diagnosis is expensive, as it requires sophisticated measurements and human interpretation of potentially large amounts of physiological data. Electrocardiogram (ECG) measurements have the potential to reduce the cost of OSA diagnosis by simplifying the measurement process. On the down side, detecting OSA events based on ECG data is a complex task which requires highly skilled practitioners. Computer algorithms can help to detect the subtle signal changes which indicate the presence of a disorder. That approach has the following advantages: computers never tire, processing resources are economical and progress, in the form of better algorithms, can be easily disseminated as updates over the internet. Furthermore, Computer-Aided Diagnosis (CAD) reduces intra- and inter-observer variability. In this review, we adopt and support the position that computer based ECG signal interpretation is able to diagnose OSA with a high degree of accuracy

    Obstructive Sleep Apnea Classification With Artificial Neural Network Based On Two Synchronic HRV Series

    No full text
    In the present study, "obstructive sleep apnea (OSA) patients" and "non-OSA patients" were classified into two groups using with two synchronic heart rate variability (HRV) series obtained from electrocardiography (ECG) and photoplethysmography (PPG) signals. A linear synchronization method called cross power spectrum density (CPSD), commonly used on HRV series, was performed to obtain high-quality signal features to discriminate OSA from controls. To classify simultaneous sleep ECG and PPG signals recorded from OSA and non-OSA patients, various feed forward neural network (FFNN) architectures are used and mean relative absolute error (MRAE) is applied on FFNN results to show affectivities of developed algorithm. The FFNN architectures were trained with various numbers of neurons and hidden layers. The results show that HRV synchronization is directly related to sleep respiratory signals. The CPSD of the HRV series can confirm the clinical diagnosis; both groups determined by an expert physician can be 99% truly classified as a single hidden-layer FFNN structure with 0.0623 MRAE, in which the maximum and phase values of the CPSD curve are assigned as two features. In future work, features taken from different physiological signals can be added to define a single feature that can classify apnea without error
    corecore