422 research outputs found

    15-yıllık periyotta İstanbul Türkiye’de dermatofitoz şüpheli köpek ve kedilerden izole edilen dermatofitler: Güncellenmiş rapor

    Get PDF
    The present research was aimed to determine the prevalence of dermatophytes isolated from symptomatic dogs and cats, within a 15-year-period, in the city of Istanbul, Turkey. Dermatological specimens were collected from 1504 dogs and 846 cats, which were presented clinical signs of ringworm. Direct microscopy and mycological cultures were performed. The fungal growth rate was detected at 8.2% and 22.8% from dogs and cats, respectively. Microsporum canis was the most frequently isolated species followed by Trichophyton spp., M. gypseum, T. mentagrophytes, M. nanum, other Microsporum spp. moreover T. tonsurans. The cats less than two-year age and more than ten-year age showed a statistically significant higher isolation rate of infection (p < 0.05). There were no statistically significant differences between the age of the dogs and the dermatophyte isolation rate and between the gender of the dogs and cats and the dermatophyte isolation rate. As a conclusion, the data suggest an updated report on local epidemiology and define potential etiologic agentsBu araştırma, İstanbul ilinde 15 yıllık bir süre içinde semptomatik köpek ve kedilerden izole edilen dermatofitlerin yaygınlığını belirlemeyi amaçlamıştır. Dermatolojik örnekler ringworm klinik belirtileri gösteren 1504 köpek ve 846 kediden toplandı. Direkt mikroskopi ve mikolojik kültürler yapıldı. Mantar üreme oranları, köpeklerde % 8.2 kedilerde % 22.8 olarak saptandı. En sık izole edilen tür Microsporum canis idi. Bunu Trichophyton spp., M. gypseum, T. mentagrophytes, M. nanum, diğer Microsporum spp. ve T. tonsurans takip etti. İki yaşından küçük ve on yaşından büyük kediler, istatistiksel olarak anlamlı derecede yüksek bir etken izolasyon oranı gösterdi (p <0.05). Köpeklerin yaşı ve dermatofit izolasyon oranları ile kedi ve köpeklerin cinsiyeti ve dermatofit izolasyon oranları arasında istatistiksel olarak anlamlı bir fark bulunmadı. Sonuç olarak, veriler yerel epidemiyoloji üzerine güncel bir rapor sunmakta ve olası etiyolojik ajanları tanımlamaktadır

    Nucleologenesis in the Caenorhabditis elegans Embryo

    Get PDF
    In the Caenorhabditis elegans nematode, the oocyte nucleolus disappears prior to fertilization. We have now investigated the re-formation of the nucleolus in the early embryo of this model organism by immunostaining for fibrillarin and DAO-5, a putative NOLC1/Nopp140 homolog involved in ribosome assembly. We find that labeled nucleoli first appear in somatic cells at around the 8-cell stage, at a time when transcription of the embryonic genome begins. Quantitative analysis of radial positioning showed the nucleolus to be localized at the nuclear periphery in a majority of early embryonic nuclei. At the ultrastructural level, the embryonic nucleolus appears to be composed of a relatively homogenous core surrounded by a crescent-shaped granular structure. Prior to embryonic genome activation, fibrillarin and DAO-5 staining is seen in numerous small nucleoplasmic foci. This staining pattern persists in the germline up to the ∼100-cell stage, until the P4 germ cell divides to give rise to the Z2/Z3 primordial germ cells and embryonic transcription is activated in this lineage. In the ncl-1 mutant, which is characterized by increased transcription of rDNA, DAO-5-labeled nucleoli are already present at the 2-cell stage. Our results suggest a link between the activation of transcription and the initial formation of nucleoli in the C. elegans embryo

    Thrombospondin-1 Contributes to Mortality in Murine Sepsis through Effects on Innate Immunity

    Get PDF
    BACKGROUND:Thrombospondin-1 (TSP-1) is involved in many biological processes, including immune and tissue injury response, but its role in sepsis is unknown. Cell surface expression of TSP-1 on platelets is increased in sepsis and could activate the anti-inflammatory cytokine transforming growth factor beta (TGFβ1) affecting outcome. Because of these observations we sought to determine the importance of TSP-1 in sepsis. METHODOLOGY/PRINCIPAL FINDINGS:We performed studies on TSP-1 null and wild type (WT) C57BL/6J mice to determine the importance of TSP-1 in sepsis. We utilized the cecal ligation puncture (CLP) and intraperitoneal E. coli injection (i.p. E. coli) models of peritoneal sepsis. Additionally, bone-marrow-derived macrophages (BMMs) were used to determine phagocytic activity. TSP-1-/- animals experienced lower mortality than WT mice after CLP. Tissue and peritoneal lavage TGFβ1 levels were unchanged between animals of each genotype. In addition, there is no difference between the levels of major innate cytokines between the two groups of animals. PLF from WT mice contained a greater bacterial load than TSP-1-/- mice after CLP. The survival advantage for TSP-1-/- animals persisted when i.p. E. coli injections were performed. TSP-1-/- BMMs had increased phagocytic capacity compared to WT. CONCLUSIONS:TSP-1 deficiency was protective in two murine models of peritoneal sepsis, independent of TGFβ1 activation. Our studies suggest TSP-1 expression is associated with decreased phagocytosis and possibly bacterial clearance, leading to increased peritoneal inflammation and mortality in WT mice. These data support the contention that TSP-1 should be more fully explored in the human condition

    Lung cancer risk in never-smokers: a population-based case-control study of epidemiologic risk factors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We conducted a case-control study in the greater Toronto area to evaluate potential lung cancer risk factors including environmental tobacco smoke (ETS) exposure, family history of cancer, indoor air pollution, workplace exposures and history of previous respiratory diseases with special consideration given to never smokers.</p> <p>Methods</p> <p>445 cases (35% of which were never smokers oversampled by design) between the ages of 20-84 were identified through four major tertiary care hospitals in metropolitan Toronto between 1997 and 2002 and were frequency matched on sex and ethnicity with 425 population controls and 523 hospital controls. Unconditional logistic regression models were used to estimate adjusted odds ratios (OR) and 95% confidence intervals (CI) for the associations between exposures and lung cancer risk.</p> <p>Results</p> <p>Any previous exposure to occupational exposures (OR total population 1.6, 95% CI 1.4-2.1, OR never smokers 2.1, 95% CI 1.3-3.3), a previous diagnosis of emphysema in the total population (OR 4.8, 95% CI 2.0-11.1) or a first degree family member with a previous cancer diagnosis before age 50 among never smokers (OR 1.8, 95% CI 1.0-3.2) were associated with increased lung cancer risk.</p> <p>Conclusions</p> <p>Occupational exposures and family history of cancer with young onset were important risk factors among never smokers.</p

    Ischemia reperfusion dysfunction changes model-estimated kinetics of myofilament interaction due to inotropic drugs in isolated hearts

    Get PDF
    BACKGROUND: The phase-space relationship between simultaneously measured myoplasmic [Ca(2+)] and isovolumetric left ventricular pressure (LVP) in guinea pig intact hearts is altered by ischemic and inotropic interventions. Our objective was to mathematically model this phase-space relationship between [Ca(2+)] and LVP with a focus on the changes in cross-bridge kinetics and myofilament Ca(2+ )sensitivity responsible for alterations in Ca(2+)-contraction coupling due to inotropic drugs in the presence and absence of ischemia reperfusion (IR) injury. METHODS: We used a four state computational model to predict LVP using experimentally measured, averaged myoplasmic [Ca(2+)] transients from unpaced, isolated guinea pig hearts as the model input. Values of model parameters were estimated by minimizing the error between experimentally measured LVP and model-predicted LVP. RESULTS: We found that IR injury resulted in reduced myofilament Ca(2+ )sensitivity, and decreased cross-bridge association and dissociation rates. Dopamine (8 μM) reduced myofilament Ca(2+ )sensitivity before, but enhanced it after ischemia while improving cross-bridge kinetics before and after IR injury. Dobutamine (4 μM) reduced myofilament Ca(2+ )sensitivity while improving cross-bridge kinetics before and after ischemia. Digoxin (1 μM) increased myofilament Ca(2+ )sensitivity and cross-bridge kinetics after but not before ischemia. Levosimendan (1 μM) enhanced myofilament Ca(2+ )affinity and cross-bridge kinetics only after ischemia. CONCLUSION: Estimated model parameters reveal mechanistic changes in Ca(2+)-contraction coupling due to IR injury, specifically the inefficient utilization of Ca(2+ )for contractile function with diastolic contracture (increase in resting diastolic LVP). The model parameters also reveal drug-induced improvements in Ca(2+)-contraction coupling before and after IR injury

    Impact of SARS-CoV-2 ORF6 and its variant polymorphisms on host responses and viral pathogenesis

    Get PDF
    : Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes several proteins that inhibit host interferon responses. Among these, ORF6 antagonizes interferon signaling by disrupting nucleocytoplasmic trafficking through interactions with the nuclear pore complex components Nup98-Rae1. However, the roles and contributions of ORF6 during physiological infection remain unexplored. We assessed the role of ORF6 during infection using recombinant viruses carrying a deletion or loss-of-function (LoF) mutation in ORF6. ORF6 plays key roles in interferon antagonism and viral pathogenesis by interfering with nuclear import and specifically the translocation of IRF and STAT transcription factors. Additionally, ORF6 inhibits cellular mRNA export, resulting in the remodeling of the host cell proteome, and regulates viral protein expression. Interestingly, the ORF6:D61L mutation that emerged in the Omicron BA.2 and BA.4 variants exhibits reduced interactions with Nup98-Rae1 and consequently impairs immune evasion. Our findings highlight the role of ORF6 in antagonizing innate immunity and emphasize the importance of studying the immune evasion strategies of SARS-CoV-2
    corecore