31 research outputs found
Yttrium-90 Radioembolization in Patients with Hepatocellular Carcinoma Who have Previously Received Sorafenib
Purpose: Yttrium-90 radioembolization (RE) is a locoregional therapy option for hepatocellular carcinoma (HCC). Sorafenib is a multikinase inhibitor used in HCC that can potentially affect the efficacy of RE by altering tumor vascularity or suppressing post-irradiation angiogenesis. The safety and efficacy of sorafenib followed by RE has not been previously reported.
Materials and Methods: Patients with HCC who received RE after sorafenib were included in this retrospective review. Overall survival, toxicity, and maximal radiographic response and necrosis criteria were examined.
Results: Ten patients (15 RE administrations) fit the inclusion criteria. All were Barcelona Clinic Liver Cancer (BCLC) stage C. Median follow-up was 16.5 weeks. Median overall survival and radiographic progression-free survival were 30 and 28 weeks, respectively. Significant differences in overall survival were seen based on Child-Pugh class (p = 0.002) and radiographic response (p = 0.009). Three patients had partial response, six had stable disease, and one had progressive disease. Grade 1 or 2 acute fatigue, anorexia, and abdominal pain were common. Three patients had Grade 3 ascites in the setting of disease progression. Two patients had Grade 3 biochemical toxicity. One patient was sufficiently downstaged following RE and sorafenib to receive a partial hepatectomy.
Conclusion: Yttrium-90 RE in patients with HCC who have received sorafenib demonstrate acceptable toxicity and rates of radiographic response. However, the overall survival is lower than that reported in the literature on RE alone or sorafenib alone. This may be due in part to more patients in this study having advanced disease compared to these other study populations. Larger prospective studies are needed to determine whether the combination of RE and sorafenib is superior to either therapy alone
Identification of RegIV as a Novel GLI1 Target Gene in Human Pancreatic Cancer
GLI1 is the key transcriptional factor in the Hedgehog signaling pathway in pancreatic cancer. RegIV is associated with regeneration, and cell growth, survival, adhesion and resistance to apoptosis. We aimed to study RegIV expression in pancreatic cancer and its relationship to GLI1.GLI1 and RegIV expression were evaluated in tumor tissue and adjacent normal tissues of pancreatic cancer patients and 5 pancreatic cancer cell lines by qRT-PCR, Western blot, and immunohistochemistry (IHC), and the correlation between them. The GLI1-shRNA lentiviral vector was constructed and transfected into PANC-1, and lentiviral vector containing the GLI1 expression sequence was constructed and transfected into BxPC-3. GLI1 and RegIV expression were evaluated by qRT-PCR and Western blot. Finally we demonstrated RegIV to be the target of GLI1 by chromatin immunoprecipitation (CHIP) and electrophoretic mobility shift assays (EMSA).The results of IHC and qRT-PCR showed that RegIV and GLI1 expression was higher in pancreatic cancer tissues versus adjacent normal tissues (p<0.001). RegIV expression correlated with GLI1 expression in these tissues (R = 0.795, p<0.0001). These results were verified for protein (R = 0.939, p = 0.018) and mRNA expression (R = 0.959, p = 0.011) in 5 pancreatic cancer cell lines. RegIV mRNA and protein expression was decreased (94.7±0.3%, 84.1±0.5%; respectively) when GLI1 was knocked down (82.1±3.2%, 76.7±2.2%; respectively) by the RNAi technique. GLI1 overexpression in mRNA and protein level (924.5±5.3%, 362.1±3.5%; respectively) induced RegIV overexpression (729.1±4.3%, 339.0±3.7%; respectively). Moreover, CHIP and EMSA assays showed GLI1 protein bound to RegIV promotor regions (GATCATCCA) in pancreatic cancer cells.GLI1 promotes RegIV transcription by binding to the RegIV gene promoter in pancreatic cancer
Clinical outcomes by Child-Pugh Class in patients with advanced hepatocellular carcinoma in a community oncology setting
Aim: Many pivotal trials in advanced hepatocellular carcinoma (HCC) require participants to have Child-Pugh A disease. However, many patients in real-world practice are Child-Pugh B or C. This study examined treatment patterns and clinical outcomes in patients with advanced HCC treated with first-line systemic therapy. Materials & methods: In this retrospective study, patients with HCC treated with first-line systemic therapy (2010–2017) were identified from US Oncology Network records. Outcomes included overall survival and progression-free survival, by Child-Pugh Class and prior liver-directed therapy. Results: Of 352 patients, 78.7% were Child-Pugh A or B, 96.6% received first-line sorafenib, and 33.8% received first-line-prior liver-directed therapy. Survival outcomes were similar for Child-Pugh A or B, and longer after first-line prior liver-directed therapy. Conclusion: First-line systemic therapy is beneficial in patients with Child-Pugh A or B, and after first-line prior liver-directed therapy. These findings may help position systemic therapy in the community setting
Immunotherapy Use Prior to Liver Transplant in Patients with Hepatocellular Carcinoma
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related mortality worldwide, and its incidence has increased rapidly in the United States over the past two decades. Liver transplant is considered curative, but is not always possible, and pre-transplant immunotherapy is of great interest as a modality for downstaging the tumor burden. We present a review of the literature on pre-liver transplant immunotherapy use in patients with HCC. Our literature search queried publications in Ovid MEDLINE, Ovid Embase, and Web of Science, and ultimately identified 24 original research publications to be included for analysis. We found that the role of PD-1 and PD-L1 in risk stratification for rejection is of special interest to researchers, and ongoing randomized clinical trials PLENTY and Dulect 2020-1 will provide insight into the role of PD-1 and PD-L1 in liver transplant management in the future. This literature search and the resulting review represents the most thorough collection, analysis, and presentation of the literature on the subject to date
Homologous Recombination Repair in Biliary Tract Cancers: A Prime Target for PARP Inhibition?
Biliary tract cancers (BTCs) are a heterogeneous group of malignancies that make up ~7% of all gastrointestinal tumors. It is notably aggressive and difficult to treat; in fact, >70% of patients with BTC are diagnosed at an advanced, unresectable stage and are not amenable to curative therapy. For these patients, chemotherapy has been the mainstay treatment, providing an inadequate overall survival of less than one year. Despite the boom in targeted therapies over the past decade, only a few targeted agents have been approved in BTCs (i.e., IDH1 and FGFR inhibitors), perhaps in part due to its relatively low incidence. This review will explore current data on PARP inhibitors (PARPi) used in homologous recombination deficiency (HRD), particularly with respect to BTCs. Greater than 28% of BTC cases harbor mutations in genes involved in homologous recombination repair (HRR). We will summarize the mechanisms for PARPi and its role in synthetic lethality and describe select genes in the HRR pathway contributing to HRD. We will provide our rationale for expanding patient eligibility for PARPi use based on literature and anecdotal evidence pertaining to mutations in HRR genes, such as RAD51C, and the potential use of reliable surrogate markers of HRD
A Pilot Trial of Molecularly Tailored Therapy for Patients with Metastatic Pancreatic Ductal Adenocarcinoma
Purpose: Despite the wide adoption of tumor molecular profiling, there is a dearth of evidence linking molecular biomarkers for treatment selection to prediction of treatment outcomes in patients with metastatic pancreatic cancer. We initiated a pilot study to test the feasibility of designing a larger phase II trial of molecularly tailored treatment for metastatic pancreatic cancer.
Methods: Our study aimed to assess the feasibility of following a treatment algorithm based on the expression of three published predictive markers of response to chemotherapy: ribonucleotide reductase catalytic subunit M1 (for gemcitabine); excision repair cross-complementation group 1 (for platinum agents); and thymidylate synthase (for 5-fluorouracil) in patients with untreated, metastatic pancreatic cancer. Results of the tumor biopsy analysis were used to assign patients to one of seven doublet regimens. Key secondary objectives included response rate (RR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS).
Results: Between December 2012 and March 2015, 30 patients were enrolled into the study. Ten patients failed screening primarily due to inadequate tumor tissue availability. Of the remaining 20 patients, 19 were assigned into 6 different chemotherapy doublets, and achieved an RR of 28%, with a DCR rate of 78%. The median PFS and OS were 5.78 and 8.21 months, respectively.
Conclusions: The incorporation of biomarkers into a treatment algorithm is feasible and resulted in a PFS and OS similar to other doublet therapies for patients with metastatic pancreatic cancer. Based on the results from this pilot study, a larger phase II randomized trial of molecularly targeted therapy versus physicians' choice of standard of care has been initiated in the second-line setting (NCT02967770)