36 research outputs found
Time is not enough : promoting strategic engagement with writing for publication
Research, scholarship and publication are central to the work of higher education. However, even academics with the necessary research and writing skills can struggle to publish as often as they would like. Research suggests that a writing retreat is one solution; there is a process going on there that addresses the problem, but how it does so has not been fully explained. We used a novel approach, containment theory, to explain why the functions of a structured retreat work. We argue that a retreat does more than simply provide time to write; it is a model for academics to meet the demands of research assessment. Finally, we conceptualise this as strategic engagement - a model for producing regular writing for publication while continuing to meet other professional demands
Templated 2D polymer heterojunctions for improved photocatalytic hydrogen production
2D polymers have emerged as one of the most promising classes of organic photocatalysts for solar fuel production due to their tunability, charge-transport properties, and robustness. They are however difficult to process and so there are limited studies into the formation of heterojunction materials incorporating these components. In this work, a novel templating approach is used to combine an imine-based donor polymer and an acceptor polymer formed through Knoevenagel condensation. Heterojunction formation is shown to be highly dependent on the topological match of the donor and acceptor polymers with the most active templated material found to be between three and nine times more active for photocatalysis than its constituent components. Transient absorption spectroscopy reveals that this improvement is due to faster charge separation and more efficient charge extraction in the templated heterojunction. The templated material shows a very high hydrogen evolution rate of >20 mmol h−1 m−2 with an ascorbic acid hole scavenger but also produces hydrogen in the presence of only water and a cobalt-based redox mediator. This suggests the improved charge-separation interface and reduced trapping accessed through this approach could be suitable for Z-scheme formation
Correction to "Tracking Charge Transfer to Residual Metal Clusters in Conjugated Polymers for Photocatalytic Hydrogen Evolution"
Tracking charge transfer to residual metal clusters in conjugated polymers for photocatalytic hydrogen evolution (Journal of the American Chemical Society (2020) 142:34 (14574-14587) DOI: 10.1021/jacs.0c06104) Page 14585. Appreciation for Dr. Yan-Gu Lin was inadvertently left out of the Acknowledgments. The scientific part of the paper remains unchanged. The complete correct Acknowledgments paragraph is as follows: ¦ ACKNOWLEDGMENTS M.S. is grateful to Imperial College for a President’s Ph.D. Scholarship and to the EPSRC for a Doctoral Prize Fellowship. J.R.D. and I.M. acknowledge support from KAUST (project numbers OSR-2015-CRG4-2572 and OSR-2018-CRG7- 3749.2). C.M.A., A.I.C., and R.S.S. acknowledge the Engineering and Physical Sciences Research Council (EPSRC, EP/ N004884/1). L.F. thanks the EU for a Marie Curie fellowship (658270). S.C. thanks Imperial College London for a Schro¨dinger Scholarship. R.G. is grateful to the FRQNT for a postdoctoral award and NSERC Discovery Grant funding. C.-L.C. appreciates his supervisor, Dr. Yan-Gu Lin, for his efforts on the beamtime support of XAS beamline and corresponding equipment/technical setup. All plotted data have been deposited on the open-access repository Zenodo and can be accessed via dx.doi.org/10.5281/zenodo.3932340
Correction to "Tracking Charge Transfer to Residual Metal Clusters in Conjugated Polymers for Photocatalytic Hydrogen Evolution"
Tracking charge transfer to residual metal clusters in conjugated polymers for photocatalytic hydrogen evolution (Journal of the American Chemical Society (2020) 142:34 (14574-14587) DOI: 10.1021/jacs.0c06104) Page 14585. Appreciation for Dr. Yan-Gu Lin was inadvertently left out of the Acknowledgments. The scientific part of the paper remains unchanged. The complete correct Acknowledgments paragraph is as follows: ¦ ACKNOWLEDGMENTS M.S. is grateful to Imperial College for a President’s Ph.D. Scholarship and to the EPSRC for a Doctoral Prize Fellowship. J.R.D. and I.M. acknowledge support from KAUST (project numbers OSR-2015-CRG4-2572 and OSR-2018-CRG7- 3749.2). C.M.A., A.I.C., and R.S.S. acknowledge the Engineering and Physical Sciences Research Council (EPSRC, EP/ N004884/1). L.F. thanks the EU for a Marie Curie fellowship (658270). S.C. thanks Imperial College London for a Schro¨dinger Scholarship. R.G. is grateful to the FRQNT for a postdoctoral award and NSERC Discovery Grant funding. C.-L.C. appreciates his supervisor, Dr. Yan-Gu Lin, for his efforts on the beamtime support of XAS beamline and corresponding equipment/technical setup. All plotted data have been deposited on the open-access repository Zenodo and can be accessed via dx.doi.org/10.5281/zenodo.3932340