106 research outputs found

    Levodopa-Induced Changes in Electromyographic Patterns in Patients with Advanced Parkinson's Disease

    Get PDF
    Levodopa medication is the most efficient treatment for motor symptoms of Parkinson's disease (PD). Levodopa significantly alleviates rigidity, rest tremor, and bradykinesia in PD. The severity of motor symptoms can be graded with UPDRS-III scale. Levodopa challenge test is routinely used to assess patients' eligibility to deep-brain stimulation (DBS) in PD. Feasible and objective measurements to assess motor symptoms of PD during levodopa challenge test would be helpful in unifying the treatment. Twelve patients with advanced PD who were candidates for DBS treatment were recruited to the study. Measurements were done in four phases before and after levodopa challenge test. Rest tremor and rigidity were evaluated using UPDRS-III score. Electromyographic (EMG) signals from biceps brachii and kinematic signals from forearm were recorded with wireless measurement setup. The patients performed two different tasks: arm isometric tension and arm passive flexion-extension. The electromyographic and the kinematic signals were analyzed with parametric, principal component, and spectrum-based approaches. The principal component approach for isometric tension EMG signals showed significant decline in characteristics related to PD during levodopa challenge test. The spectral approach on passive flexion-extension EMG signals showed a significant decrease on involuntary muscle activity during the levodopa challenge test. Both effects were stronger during the levodopa challenge test compared to that of patients' personal medication. There were no significant changes in the parametric approach for EMG and kinematic signals during the measurement. The results show that a wireless and wearable measurement and analysis can be used to study the effect of levodopa medication in advanced Parkinson's disease.Peer reviewe

    Signal features of surface electromyography in advanced Parkinson's disease during different settings of deep brain stimulation

    Get PDF
    Objective: Electromyography (EMG) and acceleration (ACC) measurements are potential methods for quantifying efficacy of deep brain stimulation (DBS) treatment in Parkinson's disease (PD). The treatment efficacy depends on the settings of DBS parameters (pulse amplitude, frequency and width). This study quantified, if EMG and ACC signal features differ between different DBS settings and if DBS effect is unequal between different muscles. Methods: EMGs were measured from biceps brachii (BB) and tibialis anterior (TA) muscles of 13 PD patients. ACCs were measured from wrists. Measurements were performed during seven different settings of DBS and analyzed using methods based on spectral analysis, signal morphology and nonlinear dynamics. Results: The results showed significant within-subject differences in the EMG signal kurtosis, correlation dimension, recurrence rate and EMG-ACC coherence between different DBS settings for BB but not for TA muscles. Correlations between EMG feature values and clinical rest tremor and rigidity scores were weak but significant. Conclusions: Surface EMG features differed between different DBS settings and DBS effect was unequal between upper and lower limb muscles. Significance: EMG changes pointed to previously defined optimal settings in most of patients, which should be quantified even more deeply in the upcoming studies. (C) 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.Peer reviewe
    corecore