92 research outputs found
PKC Signaling Regulates Drug Resistance of the Fungal Pathogen Candida albicans via Circuitry Comprised of Mkc1, Calcineurin, and Hsp90
Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC), which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK) cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which Hsp90 regulates drug resistance, and that targeting stress response signaling provides a promising strategy for treating life-threatening fungal infections
Unsupervised Bayesian linear unmixing of gene expression microarrays
Background: This paper introduces a new constrained model and the corresponding algorithm, called unsupervised Bayesian linear unmixing (uBLU), to identify biological signatures from high dimensional assays like gene expression microarrays. The basis for uBLU is a Bayesian model for the data samples which are represented as an additive mixture of random positive gene signatures, called factors, with random positive mixing coefficients, called factor scores, that specify the relative contribution of each signature to a specific sample. The particularity of the proposed method is that uBLU constrains the factor loadings to be non-negative and the factor scores to be probability distributions over the factors. Furthermore, it also provides estimates of the number of factors. A Gibbs sampling strategy is adopted here to generate random samples according to the posterior distribution of the factors, factor scores, and number of factors. These samples are then used to estimate all the unknown parameters. Results: Firstly, the proposed uBLU method is applied to several simulated datasets with known ground truth and compared with previous factor decomposition methods, such as principal component analysis (PCA), non negative matrix factorization (NMF), Bayesian factor regression modeling (BFRM), and the gradient-based algorithm for general matrix factorization (GB-GMF). Secondly, we illustrate the application of uBLU on a real time-evolving gene expression dataset from a recent viral challenge study in which individuals have been inoculated with influenza A/H3N2/Wisconsin. We show that the uBLU method significantly outperforms the other methods on the simulated and real data sets considered here. Conclusions: The results obtained on synthetic and real data illustrate the accuracy of the proposed uBLU method when compared to other factor decomposition methods from the literature (PCA, NMF, BFRM, and GB-GMF). The uBLU method identifies an inflammatory component closely associated with clinical symptom scores collected during the study. Using a constrained model allows recovery of all the inflammatory genes in a single factor
Multidrug-Resistant Tuberculosis Treatment Outcomes in Karakalpakstan, Uzbekistan: Treatment Complexity and XDR-TB among Treatment Failures
BACKGROUND: A pilot programme to treat multidrug-resistant TB (MDR-TB) was implemented in Karakalpakstan, Uzbekistan in 2003. This region has particularly high levels of MDR-TB, with 13% and 40% among new and previously treated cases, respectively. METHODOLOGY: This study describes the treatment process and outcomes for the first cohort of patients enrolled in the programme, between October 2003 and January 2005. Confirmed MDR-TB cases were treated with an individualised, second-line drug regimen based on drug susceptibility test results, while suspected MDR-TB cases were treated with a standardised regimen pending susceptibility results. PRINCIPAL FINDINGS: Of 108 MDR-TB patients, 87 were started on treatment during the study period. Of these, 33 (38%) were infected with strains resistant to at least one second-line drug at baseline, but none had initial ofloxacin resistance. Treatment was successful for 54 (62%) patients, with 13 (15%) dying during treatment, 12 (14%) defaulting and 8 (8%) failing treatment. Poor clinical condition and baseline second-line resistance contributed to treatment failure or death. Treatment regimens were changed in 71 (82%) patients due to severe adverse events or drug resistance. Adverse events were most commonly attributed to cycloserine, ethionamide and p-aminosalicylic acid. Extensively drug resistant TB (XDR-TB) was found among 4 of the 6 patients who failed treatment and were still alive in November 2006. CONCLUSIONS: While acceptable treatment success was achieved, the complexity of treatment and the development of XDR-TB among treatment failures are important issues to be addressed when considering scaling up MDR-TB treatment
A Simple Method for Combining Genetic Mapping Data from Multiple Crosses and Experimental Designs
Over the past decade many linkage studies have defined chromosomal intervals containing polymorphisms that modulate a variety of traits. Many phenotypes are now associated with enough mapping data that meta-analysis could help refine locations of known QTLs and detect many novel QTLs.We describe a simple approach to combining QTL mapping results for multiple studies and demonstrate its utility using two hippocampus weight loci. Using data taken from two populations, a recombinant inbred strain set and an advanced intercross population we demonstrate considerable improvements in significance and resolution for both loci. 1-LOD support intervals were improved 51% for Hipp1a and 37% for Hipp9a. We first generate locus-wise permuted P-values for association with the phenotype from multiple maps, which can be done using a permutation method appropriate to each population. These results are then assigned to defined physical positions by interpolation between markers with known physical and genetic positions. We then use Fisher's combination test to combine position-by-position probabilities among experiments. Finally, we calculate genome-wide combined P-values by generating locus-specific P-values for each permuted map for each experiment. These permuted maps are then sampled with replacement and combined. The distribution of best locus-specific P-values for each combined map is the null distribution of genome-wide adjusted P-values.Our approach is applicable to a wide variety of segregating and non-segregating mapping populations, facilitates rapid refinement of physical QTL position, is complementary to other QTL fine mapping methods, and provides an appropriate genome-wide criterion of significance for combined mapping results
A Practical Platform for Blood Biomarker Study by Using Global Gene Expression Profiling of Peripheral Whole Blood
Background: Although microarray technology has become the most common method for studying global gene expression, a plethora of technical factors across the experiment contribute to the variable of genome gene expression profiling using peripheral whole blood. A practical platform needs to be established in order to obtain reliable and reproducible data to meet clinical requirements for biomarker study. Methods and Findings: We applied peripheral whole blood samples with globin reduction and performed genome-wide transcriptome analysis using Illumina BeadChips. Real-time PCR was subsequently used to evaluate the quality of array data and elucidate the mode in which hemoglobin interferes in gene expression profiling. We demonstrated that, when applied in the context of standard microarray processing procedures, globin reduction results in a consistent and significant increase in the quality of beadarray data. When compared to their pre-globin reduction counterparts, post-globin reduction samples show improved detection statistics, lowered variance and increased sensitivity. More importantly, gender gene separation is remarkably clearer in post-globin reduction samples than in pre-globin reduction samples. Our study suggests that the poor data obtained from pre-globin reduction samples is the result of the high concentration of hemoglobin derived from red blood cells either interfering with target mRNA binding or giving the pseudo binding background signal. Conclusion: We therefore recommend the combination of performing globin mRNA reduction in peripheral whole blood samples and hybridizing on Illumina BeadChips as the practical approach for biomarker study
Adenosine Deaminase Activity Is a Sensitive Marker for the Diagnosis of Tuberculous Pleuritis in Patients with Very Low CD4 Counts
Background: Adenosine Deaminase Activity (ADA) is a commonly used marker for the diagnosis of tuberculous pleural effusion. There has been concern about its usefulness in immunocompromised patients, especially HIV positive patients with very low CD4 counts. The objective of this study was to evaluate the sensitivity of ADA in pleural fluid in patients with low CD4 counts. Materials and Methods: This was a retrospective case control study. Medical files of patients with tuberculous pleuritis and non-tuberculous pleuritis were reviewed. Clinical characteristics, CD4 cell counts in blood and biochemical markers in pleural fluid, including ADA were recorded. Results: One ninety seven tuberculous pleuritis and 40 non- tuberculous pleuritis patients were evaluated. Using the cut-off value of 30 U/L, the overall sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio of ADA was 94%, 95%, 19, and 0.06 respectively. The mean CD4 cell counts among TB pleuritis patients was 29 and 153 cells/microL in patients with CD4 ,50 cells/microL and .50 cells/microL, (p,0.05) respectively. The corresponding mean ADA values for these patients were 76 U/L and 72 U/L respectively (p.0.5). There was no correlation between ADA values and CD4 cell counts (r =20.120, p = 0.369). Conclusion: ADA analysis is a sensitive marker of tuberculous pleuritis even in HIV patients with very low CD4 counts in a high TB endemic region. The ADA assay is inexpensive, rapid, and simple to perform and is of great value for the immediate diagnosis of tuberculous pleuritis while waiting for culture result and this has a positive impact on patient outcome
Genetic Variance in the Adiponutrin Gene Family and Childhood Obesity
AIM: The adiponutrin gene family consists of five genes (PNPLA1-5) coding for proteins with both lipolytic and lipogenic properties. PNPLA3 has previously been associated with adult obesity. Here we investigated the possible association between genetic variants in these genes and childhood and adolescent obesity. METHODS/RESULTS: Polymorphisms in the five genes of the adiponutrin gene family were selected and genotyped using the Sequenom platform in a childhood and adolescent obesity case-control study. Six variants in PNPLA1 showed association with obesity (rs9380559, rs12212459, rs1467912, rs4713951, rs10947600, and rs12199580, p0.05). When analyzing these SNPs in relation to phenotypes, two SNPs in the PNPLA3 gene showed association with insulin sensitivity (rs12483959: beta = -0.053, p = 0.016, and rs2072907: beta = -0.049, p = 0.024). No associations were seen for PNPLA2, PNPLA4, and PNPLA5. CONCLUSIONS: Genetic variation in the adiponutrin gene family does not seem to contribute strongly to obesity in children and adolescents. PNPLA1 exhibited a modest effect on obesity and PNPLA3 on insulin sensitivity. These data, however, require confirmation in other cohorts and ethnic groups
Gene Expression-Based Classifiers Identify Staphylococcus aureus Infection in Mice and Humans
Staphylococcus aureus causes a spectrum of human infection. Diagnostic delays and uncertainty lead to treatment delays and inappropriate antibiotic use. A growing literature suggests the host’s inflammatory response to the pathogen represents a potential tool to improve upon current diagnostics. The hypothesis of this study is that the host responds differently to S. aureus than to E. coli infection in a quantifiable way, providing a new diagnostic avenue. This study uses Bayesian sparse factor modeling and penalized binary regression to define peripheral blood gene-expression classifiers of murine and human S. aureus infection. The murine-derived classifier distinguished S. aureus infection from healthy controls and Escherichia coli-infected mice across a range of conditions (mouse and bacterial strain, time post infection) and was validated in outbred mice (AUC>0.97). A S. aureus classifier derived from a cohort of 94 human subjects distinguished S. aureus blood stream infection (BSI) from healthy subjects (AUC 0.99) and E. coli BSI (AUC 0.84). Murine and human responses to S. aureus infection share common biological pathways, allowing the murine model to classify S. aureus BSI in humans (AUC 0.84). Both murine and human S. aureus classifiers were validated in an independent human cohort (AUC 0.95 and 0.92, respectively). The approach described here lends insight into the conserved and disparate pathways utilized by mice and humans in response to these infections. Furthermore, this study advances our understanding of S. aureus infection; the host response to it; and identifies new diagnostic and therapeutic avenues
Uncovering the Genetic Landscape for Multiple Sleep-Wake Traits
Despite decades of research in defining sleep-wake properties in mammals, little is known about the nature or identity of genes that regulate sleep, a fundamental behaviour that in humans occupies about one-third of the entire lifespan. While genome-wide association studies in humans and quantitative trait loci (QTL) analyses in mice have identified candidate genes for an increasing number of complex traits and genetic diseases, the resources and time-consuming process necessary for obtaining detailed quantitative data have made sleep seemingly intractable to similar large-scale genomic approaches. Here we describe analysis of 20 sleep-wake traits from 269 mice from a genetically segregating population that reveals 52 significant QTL representing a minimum of 20 genomic loci. While many (28) QTL affected a particular sleep-wake trait (e.g., amount of wake) across the full 24-hr day, other loci only affected a trait in the light or dark period while some loci had opposite effects on the trait during the light vs. dark. Analysis of a dataset for multiple sleep-wake traits led to previously undetected interactions (including the differential genetic control of number and duration of REM bouts), as well as possible shared genetic regulatory mechanisms for seemingly different unrelated sleep-wake traits (e.g., number of arousals and REM latency). Construction of a Bayesian network for sleep-wake traits and loci led to the identification of sub-networks of linkage not detectable in smaller data sets or limited single-trait analyses. For example, the network analyses revealed a novel chain of causal relationships between the chromosome 17@29cM QTL, total amount of wake, and duration of wake bouts in both light and dark periods that implies a mechanism whereby overall sleep need, mediated by this locus, in turn determines the length of each wake bout. Taken together, the present results reveal a complex genetic landscape underlying multiple sleep-wake traits and emphasize the need for a systems biology approach for elucidating the full extent of the genetic regulatory mechanisms of this complex and universal behavior
Cardiovascular Response to Beta-Adrenergic Blockade or Activation in 23 Inbred Mouse Strains
We report the characterisation of 27 cardiovascular-related traits in 23 inbred mouse strains. Mice were phenotyped either in response to chronic administration of a single dose of the β-adrenergic receptor blocker atenolol or under a low and a high dose of the β-agonist isoproterenol and compared to baseline condition. The robustness of our data is supported by high trait heritabilities (typically H2>0.7) and significant correlations of trait values measured in baseline condition with independent multistrain datasets of the Mouse Phenome Database. We then focused on the drug-, dose-, and strain-specific responses to β-stimulation and β-blockade of a selection of traits including heart rate, systolic blood pressure, cardiac weight indices, ECG parameters and body weight. Because of the wealth of data accumulated, we applied integrative analyses such as comprehensive bi-clustering to investigate the structure of the response across the different phenotypes, strains and experimental conditions. Information extracted from these analyses is discussed in terms of novelty and biological implications. For example, we observe that traits related to ventricular weight in most strains respond only to the high dose of isoproterenol, while heart rate and atrial weight are already affected by the low dose. Finally, we observe little concordance between strain similarity based on the phenotypes and genotypic relatedness computed from genomic SNP profiles. This indicates that cardiovascular phenotypes are unlikely to segregate according to global phylogeny, but rather be governed by smaller, local differences in the genetic architecture of the various strains
- …