233 research outputs found
Design enhancements of the smart sediment particle for riverbed transport monitoring
This paper discusses new enhancements that are being made to the existing ‘Smart Sediment Particle’. The smart sediment particle has been designed and implemented to track its own 3-dimensional trajectory when placed in a riverbed. This device serves as a tool to detect sedimentation in rivers. The device has been developed over the years, with its size diminishing significantly down to a sphere of 2cm radius. The readings obtained from the pebble are accurate and match well with other independent motion sensor readings. Currently a novel IPT (Inductive Power Transfer) based power supply is being integrated to this device, to charge it wirelessly, when it has been extracted from the water. A new low power, miniaturized microcontroller has been introduced to minimize the power consumption and the PCB real estate of the device. The paper discusses these new enhancements in detail and also other potential enhancements such as error compensation and wireless data transfer
Low-cost autonomous 3-D monitoring systems for hydraulic engineering environments and applications with limited accuracy requirements
The details of developing autonomous 3-D motion monitoring systems based on commercial off-the-shelf (COTS) motion sensors for hydraulic environments are discussed. Possible areas of application, are river bed sediment transport monitoring and monitoring the agitation and other physical parameters inside milk vats with a mechanized agitator. Simplified calculations of inertial navigation systems (INSs) such as Euler angle method, MATLAB programs for further processing, power management systems for autonomous operation including the possibility of inductive power transfer (IPT) and use of microelectromechanical systems (MEMS) technology are discussed. Experimental results for proof of concept systems are highlighted
Solution structure of a Plasmodium falciparum AMA-1/MSP 1 chimeric protein vaccine candidate (PfCP-2.9) for malaria
Background: The Plasmodium falciparum chimeric protein PfCP-2.9 is a promising asexual-stage malaria vaccine evaluated in clinical trials. This chimeric protein consists of two cysteine-rich domains: domain III of the apical membrane antigen 1 (AMA-1 [III]) and the C-terminal region of the merozoite surface protein 1 (MSP1-19). It has been reported that the fusion of these two antigens enhanced their immunogenicity and antibody-mediated inhibition of parasite growth in vitro. Methods: The N-15-labeled and C-13/N-15-labeled PfCP-2.9 was produced in Pichia pastoris for nuclear magnetic resonance (NMR) structure analysis. The chemical shift assignments of PfCP-2.9 were compared with those previously reported for the individual domains (i.e., PfAMA-1(III) or PfMSP 1-19). The two-dimensional spectra and transverse relaxation rates (R-2) of the PfMSP1-19 alone were compared with that of the PfCP-2.9. Results: Confident backbone assignments were obtained for 122 out of 241 residues of PfCP-2.9. The assigned residues in PfCP-2.9 were very similar to those previously reported for the individual domains. The conformation of the PfMSP1-19 in different constructs is essentially the same. Comparison of transverse relaxation rates (R-2) strongly suggests no weak interaction between the domains. Conclusions: These data indicate that the fusion of AMA-1(III) and MSP1-19 as chimeric protein did not change their structures, supporting the use of the chimeric protein as a potential malaria vaccine.Infectious DiseasesParasitologyTropical MedicineSCI(E)5ARTICLEnull
A noval noninvasive targeted therapy for osteosarcoma: the combination of LIFU and ultrasound-magnetic-mediated SPIO/TP53/PLGA nanobubble
PurposeOsteosarcoma (OS) is the most common type of primary malignant bone tumor. Transducing a functional TP53 gene can effectively inhibit OS cell activity. Poly lactic acid-glycolic acid (PLGA) nanobubbles (NBs) mediated by focused ultrasound (US) can introduce exogenous genes into target cells in animal models, but this technique relies on the passive free diffusion of agents across the body. The inclusion of superparamagnetic iron oxide (SPIO) in microbubbles allows for magnetic-based tissue localization. A low-intensity-focused ultrasound (LIFU) instrument was developed at our institute, and different intensities of LIFU can either disrupt the NBs (RLI-LIFU) or exert cytocidal effects on the target tissues (RHI-LIFU). Based on these data, we performed US-magnetic-mediated TP53-NB destruction and investigated its ability to inhibit OS growth when combined with LIFU both in vitro and in vivo.MethodsSeveral SPIO/TP53/PLGA (STP) NB variants were prepared and characterized. For the in vitro experiments, HOS and MG63 cells were randomly assigned into five treatment groups. Cell proliferation and the expression of TP53 were detected by CCK8, qRT-PCR and Western blotting, respectively. In vivo, tumor-bearing nude mice were randomly assigned into seven treatment groups. The iron distribution of Perls’ Prussian blue-stained tissue sections was determined by optical microscopy. TUNEL-DAPI was performed to examine apoptosis. TP53 expression was detected by qRT-PCR and immunohistochemistry.ResultsSPIO/TP53/PLGA NBs with a particle size of approximately 200 nm were prepared successfully. For in vitro experiments, ultrasound-targeted transfection of TP53 overexpression in OS cells and efficient inhibition of OS proliferation have been demonstrated. Furthermore, in a tumor-bearing nude mouse model, RLI-LIFU-magnetic-mediated SPIO/TP53/PLGA NBs increased the transfection efficiency of the TP53 plasmid, resulting in apoptosis. Adding RHI-LIFU to the treatment regimen significantly increased the apoptosis of OS cells in vivo.ConclusionCombining LIFU and US-magnetic-mediated SPIO/TP53/PLGA NB destruction is potentially a novel noninvasive and targeted therapy for OS
Satellite-like CdS nanoparticles anchoring onto porous NiO nanoplates for enhanced visible-light photocatalytic properties.
Novel CdS/NiO nanocomposites assembled by satellite-like CdS nanoparticles anchoring onto porous NiO nanoplates have been fabricated by a step synthesis process, which involves a chemical bathing method followed by a heat treatment, and a microwave-assisted aqueous chemical reaction. The structure and photocatalytic properties of products were characterized by various techniques. More significantly, benefiting from the synergistic effect of CdS/NiO heterojunction, the as-prepared CdS/NiO architectures exhibited superior photocatalytic activity for decolorization of Congo red. The degradation rate on CdS/NiO nanocomposites achieves about 3.5 times higher than that of pure CdS nanocrystals under visible light irradiation for 30 min, suggesting a promising application in water purification.This work was supported by the Key Projects of Support Program for Outstanding Young Talents of Anhui Province (gxyqZD2016151), the Natural Science Foundation of Anhui Province (1808085MB40), the Program of Study Abroad for Excellent Young Scholar of Anhui Province (gxfxZD2016221), the Natural Science Foundation of Anhui Province Educational Committee (KJ2014ZD08, KJ2015A145), and the Special Foundation for Scientists of Hefei University (15CR06)
An Image Filter Based on Shearlet Transformation and Particle Swarm Optimization Algorithm
Digital image is always polluted by noise and made data postprocessing difficult. To remove noise and preserve detail of image as much as possible, this paper proposed image filter algorithm which combined the merits of Shearlet transformation and particle swarm optimization (PSO) algorithm. Firstly, we use classical Shearlet transform to decompose noised image into many subwavelets under multiscale and multiorientation. Secondly, we gave weighted factor to those subwavelets obtained. Then, using classical Shearlet inverse transform, we obtained a composite image which is composed of those weighted subwavelets. After that, we designed fast and rough evaluation method to evaluate noise level of the new image; by using this method as fitness, we adopted PSO to find the optimal weighted factor we added; after lots of iterations, by the optimal factors and Shearlet inverse transform, we got the best denoised image. Experimental results have shown that proposed algorithm eliminates noise effectively and yields good peak signal noise ratio (PSNR)
- …