467 research outputs found

    Surface-wave-enabled darkfield aperture for background suppression during weak signal detection

    Get PDF
    Sensitive optical signal detection can often be confounded by the presence of a significant background, and, as such, predetection background suppression is substantively important for weak signal detection. In this paper, we present a novel optical structure design, termed surface-wave-enabled darkfield aperture (SWEDA), which can be directly incorporated onto optical sensors to accomplish predetection background suppression. This SWEDA structure consists of a central hole and a set of groove pattern that channels incident light to the central hole via surface plasmon wave and surface-scattered wave coupling. We show that the surface wave component can mutually cancel the direct transmission component, resulting in near-zero net transmission under uniform normal incidence illumination. Here, we report the implementation of two SWEDA structures. The first structure, circular-groove-based SWEDA, is able to provide polarization-independent suppression of uniform illumination with a suppression factor of 1230. The second structure, linear-groove-based SWEDA, is able to provide a suppression factor of 5080 for transverse-magnetic wave and can serve as a highly compact (5.5 micrometer length) polarization sensor (the measured transmission ratio of two orthogonal polarizations is 6100). Because the exact destructive interference balance is highly delicate and can be easily disrupted by the nonuniformity of the localized light field or light field deviation from normal incidence, the SWEDA can therefore be used to suppress a bright background and allow for sensitive darkfield sensing and imaging (observed image contrast enhancement of 27 dB for the first SWEDA)

    A benchmark for epithelial cell tracking

    Get PDF
    Segmentation and tracking of epithelial cells in light microscopy (LM) movies of developing tissue is an abundant task in cell- and developmental biology. Epithelial cells are densely packed cells that form a honeycomb-like grid. This dense packing distinguishes membrane-stained epithelial cells from the types of objects recent cell tracking benchmarks have focused on, like cell nuclei and freely moving individual cells. While semi-automated tools for segmentation and tracking of epithelial cells are available to biologists, common tools rely on classical watershed based segmentation and engineered tracking heuristics, and entail a tedious phase of manual curation. However, a different kind of densely packed cell imagery has become a focus of recent computer vision research, namely electron microscopy (EM) images of neurons. In this work we explore the benefits of two recent neuron EM segmentation methods for epithelial cell tracking in light microscopy. In particular we adapt two different deep learning approaches for neuron segmentation, namely Flood Filling Networks and MALA, to epithelial cell tracking. We benchmark these on a dataset of eight movies with up to 200 frames. We compare to Moral Lineage Tracing, a combinatorial optimization approach that recently claimed state of the art results for epithelial cell tracking. Furthermore, we compare to Tissue Analyzer, an off-the-shelf tool used by Biologists that serves as our baseline

    UV laser mediated cell selective destruction by confocal microscopy

    Get PDF
    Analysis of cell-cell interactions, cell function and cell lineages greatly benefits selective destruction techniques, which, at present, rely on dedicated, high energy, pulsed lasers and are limited to cells that are detectable by conventional microscopy. We present here a high resolution/sensitivity technique based on confocal microscopy and relying on commonly used UV lasers. Coupling this technique with time-lapse enables the destruction and following of any cell(s) in any pattern(s) in living animals as well as in cell culture systems

    Enhancing Magnetic Light Emission with All-Dielectric Optical Nanoantennas

    Get PDF
    Electric and magnetic optical fields carry the same amount of energy. Nevertheless, the efficiency with which matter interacts with electric optical fields is commonly accepted to be at least 4 orders of magnitude higher than with magnetic optical fields. Here, we experimentally demonstrate that properly designed photonic nanoantennas can selectively manipulate the magnetic versus electric emission of luminescent nanocrystals. In particular, we show selective enhancement of magnetic emission from trivalent europium-doped nanoparticles in the vicinity of a nanoantenna tailored to exhibit a magnetic resonance. Specifically, by controlling the spatial coupling between emitters and an individual nanoresonator located at the edge of a near field optical scanning tip, we record with nanoscale precision local distributions of both magnetic and electric radiative local densities of states (LDOS). The map of the radiative LDOS reveals the modification of both the magnetic and electric quantum environments induced by the presence of the nanoantenna. This manipulation and enhancement of magnetic light-matter interaction by means of nanoantennas opens up new possibilities for the research fields of opto-electronics, chiral optics, nonlinear&nano-optics, spintronics and metamaterials, amongst others.Peer ReviewedPostprint (author's final draft

    Thermal Scanning at the Cellular Level by an Optically Trapped Upconverting Fluorescent Particle

    Full text link
    Single particle spectroscopy in the form of three-dimensional optical manipulation of an upconverting nanoparticle is here used for non-invasive thermal sensing at the cellular level. In particular, a single infrared 980 nm laser beam is used as a three-dimensional optical tweezer and, simultaneously, as an optical excitation source for a single NaYF4:Er3+,Yb3+ upconverting particle. Real time analysis of the thermosensitive green emission of Er3+ ions obtained after Yb3+ excitation provides thermal sensing during optical manipulation. Thus, three-dimensional particle scanning allows for the measurement of thermal gradients in the surroundings of individual cancer cells subjected to a plasmonic-mediated photothermal therapy. It is found that such thermal gradients extends for distances larger than 10 microns, avoiding real single cell photothermal treatments under in vitro conditions. This work introduces to the scientific community a novel and simple approach for high resolution thermal sensing at the cellular level that could constitute a powerful tool for a better understanding of cell dynamics during thermal treatmentsThis work was supported by the Spanish Ministerio de Educación y Ciencia (MAT2013–47395-C4–1-R) and by Banco Santander for “Proyectos de Cooperación Interuniversitaria” (2015/ASIA/06). P.H.G thanks the Spanish Ministerio de Economía y Competitividad (MINECO) for the Juan de la Cierva program. P.R.S thanks the Spanish Ministerio de Economía y Competitividad (MINECO) for the “Promoción del talento y su Empleabilidad en I+D+i” statal progra

    Theory of a magnetic microscope with nanometer resolution

    Full text link
    We propose a theory for a type of apertureless scanning near field microscopy that is intended to allow the measurement of magnetism on a nanometer length scale. A scanning probe, for example a scanning tunneling microscope (STM) tip, is used to scan a magnetic substrate while a laser is focused on it. The electric field between the tip and substrate is enhanced in such a way that the circular polarization due to the Kerr effect, which is normally of order 0.1% is increased by up to two orders of magnitude for the case of a Ag or W tip and an Fe sample. Apart from this there is a large background of circular polarization which is non-magnetic in origin. This circular polarization is produced by light scattered from the STM tip and substrate. A detailed retarded calculation for this light-in-light-out experiment is presented.Comment: 17 pages, 8 figure

    Suzanne Eaton: The beautiful logic of development

    Full text link

    The distribution of Dishevelled in convergently extending mesoderm

    Get PDF
    Convergent extension (CE) is a conserved morphogenetic movement that drives axial lengthening of the primary body axis and depends on the planar cell polarity (PCP) pathway. In Drosophila epithelia, a polarised subcellular accumulation of PCP core components, such as Dishevelled (Dvl) protein, is associated with PCP function. Dvl has long been thought to accumulate in the mediolateral protrusions in Xenopus chordamesoderm cells undergoing CE. Here we present a quantitative analysis of Dvl intracellular localisation in Xenopus chordamesoderm cells. We find that, surprisingly, accumulations previously observed at mediolateral protrusions of chordamesodermal cells are not protrusion-specific but reflect yolk-free cytoplasm and are quantitatively matched by the distribution of the cytoplasm-filling lineage marker dextran. However, separating cell cortex-associated from bulk Dvl signal reveals a statistical enrichment of Dvl in notochord–somite boundary-(NSB)-directed protrusions, which is dependent upon NSB proximity. Dvl puncta were also observed, but only upon elevated overexpression. These puncta showed no statistically significant spatial bias, in contrast to the strongly posteriorly-enriched GFP-Dvl puncta previously reported in zebrafish. We propose that Dvl distribution is more subtle and dynamic than previously appreciated and that in vertebrate mesoderm it reflects processes other than protrusion as such

    Diffraction by a small aperture in conical geometry: Application to metal coated tips used in near-field scanning optical microscopy

    Full text link
    Light diffraction through a subwavelength aperture located at the apex of a metallic screen with conical geometry is investigated theoretically. A method based on a multipole field expansion is developed to solve Maxwell's equations analytically using boundary conditions adapted both for the conical geometry and for the finite conductivity of a real metal. The topological properties of the diffracted field are discussed in detail and compared to those of the field diffracted through a small aperture in a flat screen, i. e. the Bethe problem. The model is applied to coated, conically tapered optical fiber tips that are used in Near-Field Scanning Optical Microscopy. It is demonstrated that such tips behave over a large portion of space like a simple combination of two effective dipoles located in the apex plane (an electric dipole and a magnetic dipole parallel to the incident fields at the apex) whose exact expressions are determined. However, the large "backward" emission in the P plane - a salient experimental fact that remained unexplained so far - is recovered in our analysis which goes beyond the two-dipole approximation.Comment: 21 pages, 6 figures, published in PRE in 200
    corecore