3,276 research outputs found

    Maximally Entangled Mixed-State Generation via Local Operations

    Get PDF
    We present a general theoretical method to generate maximally entangled mixed states of a pair of photons initially prepared in the singlet polarization state. This method requires only local operations upon a single photon of the pair and exploits spatial degrees of freedom to induce decoherence. We report also experimental confirmation of these theoretical results.Comment: 5 pages, 2 figures, to be published in Physical Review

    Assessment and monitoring of ventilatory function and cough efficacy in patients with amyotrophic lateral sclerosis.

    Get PDF
    Assessing and monitoring respiratory muscle function is crucial in patients with Amyotrophic Lateral Sclerosis, since impaired function can lead to either ventilatory failure or respiratory tract infection. Spirometry, diffusing capacity of the lung, breathing pattern, sleep study, blood gas analysis and respiratory muscle strength tests, as well as cough peak flow and cough expiratory volume measurements can provide relevant information on ventilatory function and cough efficacy. With regard to respiratory muscle strength testing, the rational approach consists in starting with volitional and non-invasive tests and later using invasive and non-volitional tests. This review focuses on both ventilatory and respiratory muscle strength testing, in order to undertake a timely treatment of respiratory failure and/or impaired cough efficacy. So far, the current literature has not highlighted any gold standard which stipulates when to commence ventilation and cough support in patients with Amyotrophic Lateral Sclerosis. A composite set of clinical and functional parameters is required for treatment scheduling to monitor lung involvement and follow-up in these patients

    Entangled mixed-state generation by twin-photon scattering

    Get PDF
    We report novel experimental results on mixed-state generation by multi-mode scattering of polarization-entangled photons. By using a large variety of scattering media we obtain two markedly different classes of scattered states; namely Werner-like and sub-Werner-like states. Our experimental findings are in excellent agreement with a phenomenological model based upon the description of a scattering process as a quantum map

    Experimental demonstration of fractional orbital angular momentum entanglement of two photons

    Get PDF
    The singular nature of a non-integer spiral phase plate allows easy manipulation of spatial degrees of freedom of photon states. Using two such devices, we have observed very high dimensional (D > 3700) spatial entanglement of twin photons generated by spontaneous parametric down-conversion.Comment: submitted to Phys. Rev. Let

    Correcting for the Effects of Interstellar Extinction

    Get PDF
    This paper addresses the issue of how best to correct astronomical data for the wavelength-dependent effects of Galactic interstellar extinction. The main general features of extinction from the IR through the UV are reviewed, along with the nature of observed spatial variations. The enormous range of extinction properties found in the Galaxy, particularly in the UV spectral region, is illustrated. Fortunately, there are some tight constraints on the wavelength dependence of extinction and some general correlations between extinction curve shape and interstellar environment. These relationships provide some guidance for correcting data for the effects of extinction. Several strategies for dereddening are discussed along with estimates of the uncertainties inherent in each method. In the Appendix, a new derivation of the wavelength dependence of an average Galactic extinction curve from the IR through the UV is presented, along with a new estimate of how this extinction law varies with the parameter R = A(V)/E(B-V). These curves represent the true monochromatic wavelength dependence of extinction and, as such, are suitable for dereddening IR--UV spectrophotometric data of any resolution, and can be used to derive extinction relations for any photometry system.Comment: To appear in PASP (January 1999) 14 pages including 4 pages of figures Uses emulateapj style. PASP, in press (January 1999

    Sampling properties of random graphs: the degree distribution

    Full text link
    We discuss two sampling schemes for selecting random subnets from a network: Random sampling and connectivity dependent sampling, and investigate how the degree distribution of a node in the network is affected by the two types of sampling. Here we derive a necessary and sufficient condition that guarantees that the degree distribution of the subnet and the true network belong to the same family of probability distributions. For completely random sampling of nodes we find that this condition is fulfilled by classical random graphs; for the vast majority of networks this condition will, however, not be met. We furthermore discuss the case where the probability of sampling a node depends on the degree of a node and we find that even classical random graphs are no longer closed under this sampling regime. We conclude by relating the results to real {\it E.coli} protein interaction network data.Comment: accepted for publication in Phys.Rev.

    New Insights on Interstellar Gas-Phase Iron

    Full text link
    In this paper, we report on the gas-phase abundance of singly-ionized iron (Fe II) for 51 lines of sight, using data from the Far Ultraviolet Spectroscopic Explorer (FUSE). Fe II column densities are derived by measuring the equivalent widths of several ultraviolet absorption lines and subsequently fitting those to a curve of growth. Our derivation of Fe II column densities and abundances creates the largest sample of iron abundances in moderately- to highly-reddened lines of sight explored with FUSE, lines of sight that are on average more reddened than lines of sight in previous Copernicus studies. We present three major results. First, we observe the well-established correlation between iron depletion and and also find trends between iron depletion and other line of sight parameters (e.g. f(H_2), E_(B-V), and A_V), and examine the significance of these trends. Of note, a few of our lines of sight probe larger densities than previously explored and we do not see significantly enhanced depletion effects. Second, we present two detections of an extremely weak Fe II line at 1901.773 A in the archival STIS spectra of two lines of sight (HD 24534 and HD 93222). We compare these detections to the column densities derived through FUSE spectra and comment on the line's f-value and utility for future studies of Fe II. Lastly, we present strong anecdotal evidence that the Fe II f-values derived empirically through FUSE data are more accurate than previous values that have been theoretically calculated, with the probable exception of f_1112.Comment: Accepted for publication in ApJ, 669, 378; see ApJ version for small updates. 53 total pages (preprint format), 7 tables, 11 figure

    On the Correlation Between CO Absorption and Far-Ultraviolet Non-Linear Extinction Toward Galactic OB Stars

    Get PDF
    A sample of 59 sight lines to reddened Galactic OB stars was examined for correlations of the strength of the CO Fourth Positive (A - X) absorption band system with the ultraviolet interstellar extinction curve parameters. We used archival high-dispersion NEWSIPS IUE spectra to measure the CO absorption for comparison to parametric fits of the extinction curves from the literature. A strong correlation with the non-linear far-UV curvature term was found with greater absorption, normalized to E(B-V), being associated with more curvature. A weaker trend with the linear extinction term was also found. Mechanisms for enhancing CO in dust environments exhibiting high non-linear curvature are discussed.Comment: 10 pages, including 6 figures. LaTeX2e (emulateapj5.sty). To appear in ApJ, Sep 20, 200

    Hybrid-Entanglement in Continuous Variable Systems

    Get PDF
    Entanglement is one of the most fascinating features arising from quantum-mechanics and of great importance for quantum information science. Of particular interest are so-called hybrid-entangled states which have the intriguing property that they contain entanglement between different degrees of freedom (DOFs). However, most of the current continuous variable systems only exploit one DOF and therefore do not involve such highly complex states. We break this barrier and demonstrate that one can exploit squeezed cylindrically polarized optical modes to generate continuous variable states exhibiting entanglement between the spatial and polarization DOF. We show an experimental realization of these novel kind of states by quantum squeezing an azimuthally polarized mode with the help of a specially tailored photonic crystal fiber
    • 

    corecore