792 research outputs found
Extending Similarity Measures of Interval Type-2 Fuzzy Sets to General Type-2 Fuzzy Sets
Similarity measures provide one of the core tools that enable reasoning about
fuzzy sets. While many types of similarity measures exist for type-1 and
interval type-2 fuzzy sets, there are very few similarity measures that enable
the comparison of general type-2 fuzzy sets. In this paper, we introduce a
general method for extending existing interval type-2 similarity measures to
similarity measures for general type-2 fuzzy sets. Specifically, we show how
similarity measures for interval type-2 fuzzy sets can be employed in
conjunction with the zSlices based general type-2 representation for fuzzy sets
to provide measures of similarity which preserve all the common properties
(i.e. reflexivity, symmetry, transitivity and overlapping) of the original
interval type-2 similarity measure. We demonstrate examples of such extended
fuzzy measures and provide comparisons between (different types of) interval
and general type-2 fuzzy measures.Comment: International Conference on Fuzzy Systems 2013 (Fuzz-IEEE 2013
libtissue - implementing innate immunity
In a previous paper the authors argued the case for incorporating ideas from
innate immunity into articficial immune systems (AISs) and presented an outline
for a conceptual framework for such systems. A number of key general properties
observed in the biological innate and adaptive immune systems were hughlighted,
and how such properties might be instantiated in artificial systems was
discussed in detail. The next logical step is to take these ideas and build a
software system with which AISs with these properties can be implemented and
experimentally evaluated. This paper reports on the results of that step - the
libtissue system.Comment: 8 pages, 4 tables, 5 figures, Workshop on Artificial Immune Systems
and Immune System Modelling (AISB06), Bristol, U
'On the Application of Hierarchical Coevolutionary Genetic Algorithms: Recombination and Evaluation Partners'
This paper examines the use of a hierarchical coevolutionary genetic algorithm under different partnering strategies. Cascading clusters of sub-populations are built from the bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence higher-level sub-populations potentially search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes amongst the sub-populations on solution quality are examined for two constrained optimisation problems. We examine a number of recombination partnering strategies in the construction of higher-level individuals and a number of related schemes for evaluating sub-solutions. It is shown that partnering strategies that exploit problem-specific knowledge are superior and can counter inappropriate (sub-) fitness measurements
- …