382 research outputs found
Recommended from our members
Efficacy and Safety of Human Intravenous Immunoglobulin 10% (Panzyga®) in Patients with Primary Immunodeficiency Diseases : a Two-Stage, Multicenter, Prospective, Open-Label Study
PurposeTo assess the efficacy and safety of panzyga® (intravenous immunoglobulin 10%) in preventing serious bacterial infections (SBIs) in patients with primary immunodeficiency diseases (PIDs), a prospective, open-label, multicenter, phase 3 study and an open-label extension study were undertaken.MethodsInitially, the study drug (infusion rate ≤0.08 mL/kg/min) was administered at intervals of 3 or 4 weeks for 12 months, followed by 3 months of panzyga® at infusion rates increasing from 0.08 to 0.14 mL/kg/min. The primary endpoint in the main study was the rate of SBIs per patient-year on treatment. Secondary outcomes included non-serious infections, work/school absence, episodes of fever, quality of life, and adverse events (AEs).ResultsThe main study enrolled 51 patients (35% female, mean age 26.8 years), with 21 participating in the extension study. The rate of SBIs per patient-year was 0.08 in the total population; there were four SBIs in the 4-weekly treatment group (2/30 patients) and none in the 3-weekly group (n = 21). Compared with 4-weekly treatment, 3-weekly treatment was associated with a higher rate of upper respiratory tract infections (RTIs), ear infections, and work/school absences, but a lower rate of lower RTIs and fever. Treatment was generally well tolerated; no AE led to treatment withdrawal or death.ConclusionsOverall, the use of panzyga® in patients with antibody-deficient PID was associated with a low rate of AEs and was effective in preventing SBIs, exceeding US FDA and European Medicines Agency recommendations for efficacy
Sex-Specific Expression of the X-Linked Histone Demethylase Gene Jarid1c in Brain
Jarid1c, an X-linked gene coding for a histone demethylase, plays an important role in brain development and function. Notably, JARID1C mutations cause mental retardation and increased aggression in humans. These phenotypes are consistent with the expression patterns we have identified in mouse brain where Jarid1c mRNA was detected in hippocampus, hypothalamus, and cerebellum. Jarid1c expression and associated active histone marks at its 5′end are high in P19 neurons, indicating that JARID1C demethylase plays an important role in differentiated neuronal cells. We found that XX mice expressed Jarid1c more highly than XY mice, independent of their gonadal types (testes versus ovaries). This increased expression in XX mice is consistent with Jarid1c escape from X inactivation and is not compensated by expression from the Y-linked paralogue Jarid1d, which is expressed at a very low level compared to the X paralogue in P19 cells. Our observations suggest that sex-specific expression of Jarid1c may contribute to sex differences in brain function
Glioma stem cells are more aggressive in recurrent tumors with malignant progression than in the primary tumor, and both can be maintained long-term in vitro
<p>Abstract</p> <p>Background</p> <p>Despite the advances made during decades of research, the mechanisms by which glioma is initiated and established remain elusive. The discovery of glioma stem cells (GSCs) may help to elucidate the processes of gliomagenesis with respect to their phenotype, differentiation and tumorigenic capacity during initiation and progression. Research on GSCs is still in its infancy, so no definitive conclusions about their role can yet be drawn. To understand the biology of GSCs fully, it is highly desirable to establish permanent and biologically stable GSC lines.</p> <p>Methods</p> <p>In the current study, GSCs were isolated from surgical specimens of primary and recurrent glioma in a patient whose malignancy had progressed during the previous six months. The GSCs were cryopreserved and resuscitated periodically during long-term maintenance to establish glioma stem/progenitor cell (GSPC) lines, which were characterized by immunofluorescence, flow cytometry and transmission electronic microscopy. The primary and recurrent GSPC lines were also compared in terms of in vivo tumorigenicity and invasiveness. Molecular genetic differences between the two lines were identified by array-based comparative genomic hybridization and further validated by real-time PCR.</p> <p>Results</p> <p>Two GSPC lines, SU-1 (primary) and SU-2 (recurrent), were maintained <it>in vitro</it> for more than 44 months and 38 months respectively. Generally, the potentials for proliferation, self-renewal and multi-differentiation remained relatively stable even after a prolonged series of alternating episodes of cryopreservation and resuscitation. Intracranial transplantation of SU-1 cells produced relatively less invasive tumor mass in athymic nude mice, while SU-2 cells led to much more diffuse and aggressive lesions strikingly recapitulated their original tumors. Neither SU-1 nor SU-2 cells reached the terminal differentiation stage under conditions that would induce terminal differentiation in neural stem cells. The differentiation of most of the tumor cells seemed to be blocked at the progenitor cell phase: most of them expressed nestin but only a few co-expressed differentiation markers. Transmission electron microscopy showed that GSCs were at a primitive stage of differentiation with low autophagic activity. Array-based comparative genomic hybridization revealed genetic alterations common to both SU-1 and SU-2, including amplification of the oncogene <it>EGFR </it>and deletion of the tumor suppressor <it>PTEN</it>, while some genetic alterations such as amplification of <it>MTA1 </it>(metastasis associated gene 1) only occurred in SU-2.</p> <p>Conclusion</p> <p>The GSPC lines SU-1 and SU-2 faithfully retained the characteristics of their original tumors and provide a reliable resource for investigating the mechanisms of formation and recurrence of human gliomas with progressive malignancy. Such investigations may eventually have major impacts on the understanding and treatment of gliomas.</p
Constitutive phosphorylation of the FOXO1 transcription factor in gastric cancer cells correlates with microvessel area and the expressions of angiogenesis-related molecules
<p>Abstract</p> <p>Background</p> <p>Although FOXO transcription factors may have an anti-angiogenic role, little is known about their role in tumor angiogenesis. The present study was performed to investigate the correlation between the constitutive expression of phosphorylated FOXO1 (pFOXO1) and angiogenesis in gastric cancer.</p> <p>Methods</p> <p>Immunohistochemistry was performed on tissue array slides containing 272 gastric carcinoma specimens, and the correlations between the cytoplasmic pFOXO1 expression in gastric cancer cells and CD34-immunopositive microvessel area (MVA) or the expressions of angiogenesis-related molecules were analyzed. <it>In vitro </it>analyses with Western blotting and semiquantitative reverse transcription-polymerase chain reaction were performed using the stable SNU-638 gastric cancer cell line transfected with lentivirus-delivered FOXO1 short hairpin RNA.</p> <p>Results</p> <p>The cytoplasmic expression of pFOXO1 in tumor cells was observed in 85% of gastric carcinoma cases, and was found to be positively associated with higher MVA (<it>P </it>= 0.048). Moreover, pFOXO1 expression was positively correlated with the expressions of several angiogenesis-related proteins, including hypoxia inducible factor-1α (HIF-1α, <it>P </it>= 0.003), vessel endothelial growth factor (<it>P </it>= 0.004), phosphorylated protein kinase B (<it>P </it>< 0.001), and nuclear factor-κB (<it>P </it>= 0.040). In contrast, the expression of pFOXO1 was not correlated with that of phosphorylated signal transducer and activator of transcription 3 or β-catenin. In addition, cell culture experiments showed that FOXO1 suppression increased the mRNA and protein expressions of HIF-1α.</p> <p>Conclusion</p> <p>Our results suggest that pFOXO1 expression in cancer cells plays a role in gastric cancer angiogenesis via mechanisms involving various angiogenesis-related molecules. Animal experiments are needed to confirm the anti-angiogenic role of FOXO1 in human gastric cancer.</p
Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector
A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino
Polyenylpyrrole Derivatives Inhibit NLRP3 Inflammasome Activation and Inflammatory Mediator Expression by Reducing Reactive Oxygen Species Production and Mitogen-Activated Protein Kinase Activation
10.1371/journal.pone.0076754PLoS ONE810-POLN
- …