50 research outputs found

    Identification of mouse orthologue of endogenous secretory receptor for advanced glycation end-products : structure, function and expression

    Get PDF
    取得学位 : 博士(医学), 学位授与番号 : 医博甲第1850号, 学位授与年月日 : 平成19年3月22日, 学位授与大学 : 金沢大学, 主査教授 : 小川 智, 副査教授 : 多久和 陽, 東田 陽

    Preventive Effect of Salicylate and Pyridoxamine on Diabetic Nephropathy

    Get PDF
    Objective. Diabetic nephropathy is a life-threatening complication in patients with long-standing diabetes. Hemodynamic, inflammatory, and metabolic factors are considered as developmental factors for diabetic nephropathy. In this study, we evaluated whether pharmacological interventions with salicylate, compared to pyridoxamine, could prevent diabetic nephropathy in mice. Methods. Male mice overexpressing inducible nitric oxide synthase in pancreatic β-cells were employed as a diabetic model. Salicylate (3 g/kg diet) or pyridoxamine (1 g/L drinking water; ~200 mg/kg/day) was given for 16 weeks to assess the development of diabetic nephropathy. Treatment with long-acting insulin (Levemir 2 units/kg twice a day) was used as a control. Results. Although higher blood glucose levels were not significantly affected by pyridoxamine, early to late stage indices of nephropathy were attenuated, including kidney enlargement, albuminuria, and increased serum creatinine, glomerulosclerosis, and inflammatory and profibrotic gene expressions. Salicylate showed beneficial effects on diabetic nephropathy similar to those of pyridoxamine, which include lowering blood glucose levels and inhibiting macrophage infiltration into the kidneys. Attenuation of macrophage infiltration into the kidneys and upregulation of antiglycating enzyme glyoxalase 1 gene expression were found only in the salicylate treatment group. Conclusions. Treatment with salicylate and pyridoxamine could prevent the development of diabetic nephropathy in mice and, therefore, would be a potentially useful therapeutic strategy against kidney problems in patients with diabetes

    Low molecular weight heparin suppresses receptor for advanced glycation end products-mediated expression of malignant phenotype in human fibrosarcoma cells

    Get PDF
    医薬保健研究域医学系The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor and its engagement by ligands such as high mobility group box 1 (HMGB1) is implicated in tumor growth and metastasis. Low molecular weight heparin (LMWH) has an antagonistic effect on the RAGE axis and is also reported to exert an antitumor effect beyond the known activity of anticoagulation. However, the link between the anti-RAGE and antitumor activities of LMWH has not yet to be fully elucidated. In this study, we investigated whether LMWH could inhibit tumor cell proliferation, invasion, and metastasis by blocking the RAGE axis using in vitro and in vivo assay systems. Stably transformed HT1080 human fibrosarcoma cell lines were obtained, including human full-length RAGE-overexpressing (HT1080RAGE), RAGE dominant-negative, intracellular tail-deleted RAGE-overexpressing (HT1080dnRAGE), and mock-transfected control (HT1080mock) cells. Confocal microscopy showed the expression of HMGB1 and RAGE in HT1080 cells. The LMWH significantly inhibited HMGB1-induced NFκB activation through RAGE using an NFκB-dependent luciferase reporter assay and the HT1080 cell lines. Overexpression of RAGE significantly accelerated, but dnRAGE expression attenuated HT1080 cell proliferation and invasion in vitro, along with similar effects on local tumor mass growth and lung metastasis in vivo. Treatment with LMWH significantly inhibited the migration, invasion, tumor formation, and lung metastasis of HT1080RAGE cells, but not of HT1080mock or HT1080dnRAGE cells. In conclusion, this study revealed that RAGE exacerbated the malignant phenotype of human fibrosarcoma cells, and that this exacerbation could be ameliorated by LMWH. It is suggested that LMWH has therapeutic potential in patients with certain types of malignant tumors. © 2013 Japanese Cancer Association

    The plant specific CDKB1-CYCB1 complex mediates homologous recombination repair in Arabidopsis

    Get PDF
    Upon DNA damage, cyclin-dependent kinases (CDKs) are typically inhibited to block cell division. In many organisms, however, it has been found that CDK activity is required for DNA repair, especially for homology-dependent repair (HR), resulting in the conundrum how mitotic arrest and repair can be reconciled. Here, we show that Arabidopsis thaliana solves this dilemma by a division of labor strategy. We identify the plant-specific B1-type CDKs (CDKB1s) and the class of B1-type cyclins (CYCB1s) as major regulators of HR in plants. We find that RADIATION SENSITIVE 51 (RAD51), a core mediator of HR, is a substrate of CDKB1-CYCB1 complexes. Conversely, mutants in CDKB1 and CYCB1 fail to recruit RAD51 to damaged DNA. CYCB1; 1 is specifically activated after DNA damage and we show that this activation is directly controlled by SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a transcription factor that acts similarly to p53 in animals. Thus, while the major mitotic cell-cycle activity is blocked after DNA damage, CDKB1-CYCB1 complexes are specifically activated to mediate HR

    Nurture vs. nature in diabetic vasculopathy: roles of advanced glycation endproducts and the receptor for them

    Get PDF
    金沢大学大学院医学部医学系研究科As is diabetes itself, diabetic vasculopathy is a multifactor disease. Studies conducted in this lab revealed advanced glycation endproducts (AGE) as the major environmental account for vascular cell derangement characteristic of diabetes, and the receptor for AGE (RAGE) as the major genetic factor that responds to them. AGE fractions that caused the vascular derangement were proven to be RAGE ligands. When made diabetic, RAGE-overexpressing transgenic mice exhibited the exacerbation of the indices of nephropathy, and this was prevented by the inhibition of AGE formation. We also created RAGE-deficient mice. They showed marked amelioration of diabetic nephropathy. Extracellular signals and nuclear factors that induce the transcription of human RAGE gene were also identified, which would be regarded as risk factors of diabetic complications. Through an analysis of vascular polysomal poly(A)+ RNA, we came across a novel splice variant coding for a soluble RAGE protein, and named it endogenous secretory RAGE (esRAGE). esRAGE was able to capture AGE ligands and neutralize the AGE action on endothelial cells, suggesting that this variant has a potential to protect blood vessels from diabetes-induced injury. The AGE–RAGE system should thus be regarded as a candidate molecular target for overcoming this life- and quality of life (QOL)-threatening disease

    Anti-tumor effects of a nonsteroidal anti-inflammatory drug zaltoprofen on chondrosarcoma via activating peroxisome proliferator-activated receptor gamma and suppressing matrix metalloproteinase-2 expression.

    Get PDF
    金沢大学医薬保健研究域医学系Surgical resection is the only treatment for chondrosarcomas, because of their resistance to chemotherapy and radiotherapy; therefore, additional strategies are crucial to treat chondrosarcomas. Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcription factor, which has been reported as a possible therapeutic target in certain malignancies including chondrosarcomas. In this study, we demonstrated that a nonsteroidal anti-inflammatory drug, zaltoprofen, could induce PPARγ activation and elicit anti-tumor effects in chondrosarcoma cells. Zaltoprofen was found to induce expressions of PPARγ mRNA and protein in human chondrosarcoma SW1353 and OUMS27 cells, and induce PPARγ-responsible promoter reporter activities. Inhibitory effects of zaltoprofen were observed on cell viability, proliferation, migration, and invasion, and the activity of matrix metalloproteinase-2 (MMP2); these effects were dependent on PPARγ activation and evidenced by silencing PPARγ. Moreover, we showed a case of a patient with cervical chondrosarcoma (grade 2), who was treated with zaltoprofen and has been free from disease progression for more than 2 years. Histopathological findings revealed enhanced expression of PPARγ and reduced expression of MMP2 after administration of zaltoprofen. These findings demonstrate that zaltoprofen could be a promising drug against the malignant phenotypes in chondrosarcomas via activation of PPARγ and inhibition of MMP2 activity. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.2957320

    In vitro anticancer effects of a RAGE inhibitor discovered using a structure-based drug design system.

    Get PDF
    金沢大学医薬保健研究域医学系Receptor for advanced glycation end-products (RAGE) is a pattern recognition receptor implicated in the pathogenesis of certain types of cancer. In the present study, papaverine was identified as a RAGE inhibitor using the conversion to small molecules through optimized‑peptide strategy drug design system. Papaverine significantly inhibited RAGE‑dependent nuclear factor κ‑B activation driven by high mobility group box‑1, a RAGE ligand. Using RAGE‑ or dominant‑negative RAGE‑expressing HT1080 human fibrosarcoma cells, the present study revealed that papaverine suppressed RAGE‑dependent cell proliferation and migration dose‑dependently. Furthermore, papaverine significantly inhibited cell invasion. The results of the present study suggested that papaverine could inhibit RAGE, and provided novel insights into the field of RAGE biology, particularly anticancer therapies.Embargo Period 6 month

    Vascular RAGE transports oxytocin into the brain to elicit its maternal bonding behaviour in mice

    Get PDF
    金沢大学医薬保健研究域医学系Oxytocin sets the stage for childbirth by initiating uterine contractions, lactation and maternal bonding behaviours. Mice lacking secreted oxcytocin (Oxt -/-, Cd38 -/-) or its receptor (Oxtr -/-) fail to nurture. Normal maternal behaviour is restored by peripheral oxcytocin replacement in Oxt -/- and Cd38 -/-, but not Oxtr -/- mice, implying that circulating oxcytocin crosses the blood-brain barrier. Exogenous oxcytocin also has behavioural effects in humans. However, circulating polypeptides are typically excluded from the brain. We show that oxcytocin is transported into the brain by receptor for advanced glycation end-products (RAGE) on brain capillary endothelial cells. The increases in oxcytocin in the brain which follow exogenous administration are lost in Ager -/- male mice lacking RAGE, and behaviours characteristic to abnormalities in oxcytocin signalling are recapitulated in Ager -/- mice, including deficits in maternal bonding and hyperactivity. Our findings show that RAGE-mediated transport is critical to the behavioural actions of oxcytocin associated with parenting and social bonding.3082047
    corecore