258 research outputs found
Conversion of C6 and C5 sugars in undetoxified wet exploded bagasse hydrolysates using Scheffersomyces (Pichia) stipitis CBS6054
Sugarcane bagasse is a potential feedstock for cellulosic ethanol production, rich in both glucan and xylan. This stresses the importance of utilizing both C(6) and C(5) sugars for conversion into ethanol in order to improve the process economics. During processing of the hydrolysate degradation products such as acetate, 5-hydroxymethylfurfural (HMF) and furfural are formed, which are known to inhibit microbial growth at higher concentrations. In the current study, conversion of both glucose and xylose sugars into ethanol in wet exploded bagasse hydrolysates was investigated without detoxification using Scheffersomyces (Pichia) stipitis CBS6054, a native xylose utilizing yeast strain. The sugar utilization ratio and ethanol yield (Y(p/s)) ranged from 88-100% and 0.33-0.41 ± 0.02 g/g, respectively, in all the hydrolysates tested. Hydrolysate after wet explosion at 185°C and 6 bar O(2), composed of mixed sugars (glucose and xylose) and inhibitors such as acetate, HMF and furfural at concentrations of 3.2 ± 0.1, 0.4 and 0.5 g/l, respectively, exhibited highest cell growth rate of 0.079 g/l/h and an ethanol yield of 0.39 ± 0.02 g/g sugar converted. Scheffersomyces stipitis exhibited prolonged fermentation time on bagasse hydrolysate after wet explosion at 200°C and 6 bar O(2) where the inhibitors concentration was further increased. Nonetheless, ethanol was produced up to 18.7 ± 1.1 g/l resulting in a yield of 0.38 ± 0.02 g/g after 82 h of fermentation
Improving biogas yields using an innovative concept for conversion of the fiber fraction of manure
The potential of a new concept to enable economically feasible operation of manure-based biogas plants was investigated at laboratory scale. Wet explosion (WEx) was applied to the residual manure fibers separated after the anaerobic digestion process for enhancing the biogas yield before reintroducing the fiber fraction into the biogas reactor. The increase in methane yield of the digested manure fibers was investigated by applying the WEx treatment under five different process conditions. The WEx treatment at 180 °C and a treatment time of 10 min without addition of oxygen was found to be optimal, resulting in 136% increase in methane yield compared with the untreated digested manure fibers in batch experiments. In a continuous mesophilic reactor process the addition of WEx-treated digested fibers in co-digestion with filtered manure did not show any signs of process inhibition, and the overall methane yield was on average 75% higher than in a control reactor with addition of non-treated digested fibers.</jats:p
- …