1,517 research outputs found
On the nature of pressure‐induced coordination changes in silicate melts and glasses
Progressive decreases in the Si‐O‐Si angles between corner‐shared silicate tetrahedra in glasses and melts with increasing pressure can lead to arrangements of oxygen atoms that can be described in terms of edge‐ or face‐shared octahedra. This mechanism of compression can account for the gradual, continuous increases in melt and glass densities from values at low pressure that indicate dominantly tetrahedral coordination of Si to values at several tens of GPa that suggest higher coordination. It also can explain the unquenchable nature of octahedrally coordinated Si in glasses, the absence of spectroscopically detectable octahedrally coordinated Si in glasses until they are highly compressed, the gradual and reversible transformation from tetrahedral to octahedral coordination in glasses once the transformation is detectable spectroscopically, and the fact that this transformation takes place in glass at room temperature. It may also have relevance to pressure‐induced transformations from crystalline to glassy phases, the difficulty in retrieving some metastable high pressure crystalline phases at low pressure, and the observed differences between the pressures required for phase transformations in shock wave experiments on glasses and crystals
Heat of Formation of O2–
A series of Born–Mayer-type calculations are used to calculate the lattice energies of simple oxides (MgO, BeO, CaO, and ZnO). Repulsion and other non-Coulombic contributions to the lattice energy are obtained using thermodynamic and recent ultrasonic data for the bulk moduli and the isothermal pressure and temperature derivatives of the elastic constants. Using thermochemical data for the heat of formation of MgO, CaO, and BeO and their cations, the heat of formation of O2–, DeltaHf°(O2–), is calculated to be 197 ± 5 kcal/mole. Using the largest value of DeltaHf°(O2–), obtained for MgO, presumably the most ionic of the crystals treated, a value of 202.3 kcal/mole is obtained. These values are believed to be more accurate than earlier values given by Morris and by Huggins and Sakamoto who obtained 210 ± 6 and 221 ± 15 kcal/mole. The anomalously low value calculated for DeltaHf°(O2–) for ZnO is believed to result from a substantial covalent contribution in the Zn[Single Bond]O bond in this oxide
Multiwavelength optical pyrometer for shock compression experiments
A system for measurement of the spectral radiance of materials shocked to high pressures (~100 GPa) by impact using a light gas gun is described. Thermal radiation from the sample is sampled at six wavelength bands in the visible spectrum, and each signal is separately detected by solid-state photodiodes, and recorded with a time resolution of ~10 ns. Interpretation of the records in terms of temperature of transparent sample materials is discussed. Results of a series of exploratory experiments with metals are also given. Shock temperatures in the range 4000–8000 K have been reliably measured. Spectral radiance and temperatures have been determined with uncertainties of 2%
Depth of Cracking beneath Impact Craters: New Constraint for Impact Velocity
Both small-scale impact craters in the laboratory and less than 5 km in diameter bowl-shaped craters on the Earth are strength (of rock) controlled. In the strength regime, crater volumes are nearly proportional to impactor kinetic energy. The depth of the cracked rock zone beneath such craters depends on both impactor energy and velocity. Thus determination of the maximum zone of cracking constrains impact velocity. We show this dependency for small-scale laboratory craters where the cracked zone is delineated via ultrasonic methods. The 1 km-deep cracked zone beneath Meteor Crater is found to be consistent with the crater scaling of Schmidt (1) and previous shock attenuation calculations
Melting, vaporization, and energy partitioning for impacts on asteroidal and planetary objects
A three-dimensional smoothed particle hydrodynamics code was used to model normal and oblique impacts of silicate projectiles on asteroidal and planetary bodies. The energy of the system, initially in the kinetic energy of the impactor, is partitioned after impact into internal and kinetic energy of the impactor and the target body. These simulations show that, unlike the case of impacts onto a half-space, a significant amount of energy remains in the kinetic energy of the impacting body, as parts of it travel past the main planet and escape the system. This effect is greater for more oblique impacts, and for impacts onto the small planets. Melting and vaporization of both bodies were also examined. The amount of the target body melted was much greater in the case of smaller targets than for an impact of a similar scale on a larger body
Near Earth asteroid orbit perturbation and fragmentation
Collisions by near earth asteroids or the nuclei of comets pose varying levels of threat to man. A relatively small object, approximately 100 meter diameter, which might be found on an impact trajectory with a populated region of the Earth, could potentially be diverted from an Earth impacting trajectory by mass driver rocket systems. For larger bodies, such systems would appear to be beyond current technology. For any size object, nuclear explosions appear to be more efficient, using either the prompt blow-off from neutron radiation, the impulse from ejecta of near-surface explosion for deflection, or as a fragmenting charge. Practical deflections of bodies with diameters of 0.1, 1, and 10 km require interception, years to decades prior to earth encounter, with explosions a few kilotons, megatons, or gigatons, respectively, of equivalent TNT energy to achieve orbital velocity changes or destruction to a level where fragments are dispersed to harmless spatial densities
A planetary ultra hypervelocity impact mechanics and shock wave science facility
Using the concept of intercepting orbits from a pair of Space Station serviced free flyers, a class of impact and shock wave experiments pertinent to planetary science can be performed. One proposed free flying vehicle is an impactor dispensor, and the second is the impact laboratory. How collision is achieved by utilizing essentially twice orbital velocity is demonstrated. The impactor dispensor contains a series of small flyer plates or other projectiles which are launched into the trajectory of the impactor laboratory at appropriate positions. The impactor laboratory is a large impact tank similar to those in terrestrial gun laboratories, except that it contains a supply of targets and instrumentation such as high speed cameras, flash X-ray apparatus, and digital recorders. Shock and isentropic pressures of up to 20 Mbar are achievable with such a system which provides 15 km/sec impact velocities for precisely oriented projectiles
Dustbuster: a compact impact-ionization time-of-flight mass spectrometer for in situ analysis of cosmic dust
We report on the design and testing of a compact impact-ionization time-of-flight mass spectrometer for analysis of cosmic dust, suitable for use on deep space missions. The instrument, Dustbuster, incorporates a large target area with a reflectron, simultaneously optimizing mass resolution, particle detection, and ion collection. Dust particles hit the 65-cm2 target plate and are partially ionized by the impact. The resulting ions, with broad energy and angular distributions, are accelerated through a modified reflectron, focusing ions of specific m/z in space and time to produce high-resolution mass spectra. The cylindrically symmetric instrument is 10 cm in diameter and 20 cm in length, considerably smaller than previous in situ dust analyzers, and can be easily scaled as needed for specific mission requirements. Laser desorption ionization of metal and mineral samples embedded in the impact plate simulated particle impacts for evaluations of instrument performance. Mass resolution in these experiments ranged from 60–180, permitting resolution of isotopes. The mass spectrometer can be combined with other instrument components to determine dust particle trajectories and sizes
- …
