42 research outputs found

    Increased expression of cysteine cathepsins in ovarian tissue from chickens with ovarian cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cysteine cathepsins (CTSs) are involved in the degradation and remodeling of the extracellular matrix and are associated with cell transformation, differentiation, motility, and adhesion. These functions are also related to cancer cell invasion and metastasis. Chickens spontaneously develop epithelial ovarian cancer and are therefore a good animal model for human ovarian cancer. However, no studies have investigated the expression of CTSs in chickens with ovarian cancer.</p> <p>Methods</p> <p>Cancerous (n = 5) and normal (n = 3) ovaries were collected from 2-to 3-year-old hens, and ovarian tissue samples were collected for study. Ovarian cancers were evaluated with hematoxylin and eosin staining. Reverse transcriptase and quantitative PCR analyses, in situ hybridization analysis were performed to examine the mRNA expression pattern of three CTSs in detail, and protein expression of CTSB was evaluated.</p> <p>Results</p> <p>The CTSB, CTSC, and CTSS genes were highly expressed in cancerous chicken ovaries. Messenger RNAs for the three CTSs were localized to a nodule area, a major characteristic of cancerous ovaries, but the three CTSs showed no specific localization in normal ovaries. Immunoreactive CTSB protein was present in the nodule area of cancerous ovaries.</p> <p>Conclusion</p> <p>Our results suggest that CTSB, CTSC, and CTSS have important functions in the development of epithelial ovarian cancer.</p

    Mentides a les xarxes : ens ho empassem tot, a internet?

    Get PDF
    The reproductive system of chickens undergoes dynamic morphological and functional tissue remodeling during the molting period. The present study identified global gene expression profiles following oviductal tissue regression and regeneration in laying hens in which molting was induced by feeding high levels of zinc in the diet. During the molting and recrudescence processes, progressive morphological and physiological changes included regression and re-growth of reproductive organs and fluctuations in concentrations of testosterone, progesterone, estradiol and corticosterone in blood. The cDNA microarray analysis of oviductal tissues revealed the biological significance of gene expression-based modulation in oviductal tissue during its remodeling. Based on the gene expression profiles, expression patterns of selected genes such as, TF, ANGPTL3, p20K, PTN, AvBD11 and SERPINB3 exhibited similar patterns in expression with gradual decreases during regression of the oviduct and sequential increases during resurrection of the functional oviduct. Also, miR-1689* inhibited expression of Sp1, while miR-17-3p, miR-22* and miR-1764 inhibited expression of STAT1. Similarly, chicken miR-1562 and miR-138 reduced the expression of ANGPTL3 and p20K, respectively. These results suggest that these differentially regulated genes are closely correlated with the molecular mechanism(s) for development and tissue remodeling of the avian female reproductive tract, and that miRNA-mediated regulation of key genes likely contributes to remodeling of the avian reproductive tract by controlling expression of those genes post-transcriptionally. The discovered global gene profiles provide new molecular candidates responsible for regulating morphological and functional recrudescence of the avian reproductive tract, and provide novel insights into understanding the remodeling process at the genomic and epigenomic levels

    SERPINB3 in the Chicken Model of Ovarian Cancer: A Prognostic Factor for Platinum Resistance and Survival in Patients with Epithelial Ovarian Cancer

    Get PDF
    Serine protease inhibitors (SERPINs) appear to be ubiquitously expressed in a variety of species and play important roles in pivotal physiological processes such as angiogenesis, immune responses, blood coagulation and fibronolysis. Of these, squamous cell carcinoma antigen 1 (SCCA1), also known as a SERPINB3, was first identified in squamous cell carcinoma tissue from the cervix of women. However, there is little known about the SERPINB3 expression in human epithelial ovarian cancer (EOC). Therefore, in the present study, we investigated the functional role of SERPINB3 gene in human EOC using chickens, the most relevant animal model. In 136 chickens, EOC was found in 10 (7.4%). SERPINB3 mRNA was induced in cancerous, but not normal ovaries of chickens (P<0.01), and it was abundant only in the glandular epithelium of cancerous ovaries of chickens. Further, several microRNAs, specifically miR-101, miR-1668 and miR-1681 were discovered to influence SERPINB3 expression via its 3'-UTR which suggests that post-transcriptional regulation influences SERPINB3 expression in chickens. SERPINB3 protein was localized predominantly to the glandular epithelium in cancerous ovaries of chickens, and it was abundant in the nucleus of both chicken and human ovarian cancer cell lines. In 109 human patients with EOC, 15 (13.8%), 66 (60.6%) and 28 (25.7%) patients showed weak, moderate and strong expression of SERPINB3 protein, respectively. Strong expression of SERPINB3 protein was a prognostic factor for platinum resistance (adjusted OR; odds ratio, 5.94; 95% Confidence Limits, 1.21-29.15), and for poor progression-free survival (PFS; adjusted HR; hazard ratio, 2.07; 95% CI; confidence interval, 1.03-4.41). Therefore, SERPINB3 may play an important role in ovarian carcinogenesis and be a novel biomarker for predicting platinum resistance and a poor prognosis for survival in patients with EOC

    Matrix metalloproteinase 3 is a stromal marker for chicken ovarian cancer

    Get PDF
    Matrix metalloproteinases (MMPs) are involved in the degradation of the extracellular matrix and basement membranes. Due to this, MMPs have been thought to promote invasion and metastasis of cancer cells and angiogenesis in tumors. Even though the chicken is a useful animal model for studying human ovarian cancer, no reports exist of the MMP expression pattern in chicken ovarian cancer. Therefore, we investigated the expression pattern of MMPs in chicken ovarian cancer. Results of RT-PCR and quantitative RT-PCR analyses showed MMP3 to be over\_expressed in cancerous hen ovaries. In situ hybridization analysis of cancerous chicken ovaries showed that MMP3 mRNA was predominantly localized in the stroma, which is similar to MMP3 expression in human cancers. The results suggest that the expression pattern of MMP3 mRNA in chicken ovarian cancer is similar to that in various types of human cancer. Moreover, MMP3 poten\-tially plays a significant role in developing ovarian cancer in chickens. The cell type\_ specific expression of MMP3 makes this gene a unique marker for ovarian cancer in chickens

    Claudin 10 Is a Glandular Epithelial Marker in the Chicken Model as Human Epithelial Ovarian Cancer

    No full text
    Introduction: The aim of this study was to investigate the expression profiles of claudin (CLDN) gene family members between normal and cancerous ovaries of White Leghorn hens. Methods: For the detection of ovarian cancer, 120-week-old White Leghorn hens (n = 40) that could not produce eggs for at least 2 months were humanely killed, and candidate cancerous ovaries were stained with hematoxylin and eosin. The existence of CLDN genes in normal and cancerous ovaries was confirmed by reverse transcriptionYpolymerase chain reaction (RT-PCR) analysis. Quantitative real-time PCR was performed to investigate the fold change in CLDN1, CLDN5, and CLDN10 messenger RNA (mRNA) expression levels. In situ hybridization was performed to further confirm the localization of CLDN10 mRNA in normal and cancerous ovaries. Results: In total, we obtained 3 normal and 5 cancerous ovaries from the experimental hens. Among the claudin family genes, CLDN1, CLDN5, and CLDN10 were detected in normal and/or cancerous ovaries by RT-PCR analysis. According to quantitative real-time PCR analysis, CLDN1 and CLDN5 mRNA expression levels were not significantly different between normal and cancerous ovaries, whereas the CLDN10 mRNA expression level significantly increased in cancerous ovaries compared with normal ovaries. CLDN10 mRNA was specifically detected in cancerous ovaries. Conclusions: Our study indicates that CLDN10 is a novel biomarker for detecting ovarian cancer in the chicken. We provide new insight into using the chicken as a suitable animal model for investigating the effect and function of CLDN in human ovarian cancer

    ERBB receptor feedback inhibitor 1: Identification and regulation by estrogen in chickens

    No full text
    The ERBB receptor feedback inhibitor 1 (ERRFI1) is a scaffolding adaptor protein, that plays a pivotal role in the epidermal growth factor receptor (EGFR) cell signaling cascade as a negative regulator affecting many important physiological processes. It was recently reported that ERRFI1 is a critical regulator of the response of the endometrium to estrogen regulation of tissue homeostasis in mice. But, very little is known about ERRF11 and hormonal regulation of the ERRFI1 gene in chickens. Therefore, in the present study, ERRFI1 gene was cloned and its differential expression profile analyzed at different embryonic stages, in various adult organs, and in oviducts from estrogen-treated chickens. Chicken ERRFI1 has an open-reading frame of 2848 nucleotides that encode for a protein of 465 amino acids that has considerable homology to mammalian ERRFI1 proteins (>62% identity). Importantly, ERRFI1 mRNA is abundantly distributed in various organs from chickens. We then determined that DES (diethylstilbestrol, a synthetic nonsteroidal estrogen) induced ERRFI1 mRNA and protein predominantly in luminal and glandular epithelial cells of the oviduct. Further, we determined whether microRNAs, specifically miR-200b, miR-429 and miR-1639, influence ERRFI1 expression via its 30UTR and found that it does not directly target the 30UTR of ERRFI1 mRNA. Therefore, it is unlikely that post-transcriptional regulation influences ERRFI1 expression in the chicken oviduct. In conclusion, our results indicate that ERRFI1 is a novel estrogenstimulated gene expressed in epithelial cells of the chicken oviduct that likely plays an important role in oviduct growth and differentiation during early development of the chicken

    Avian SERPINB11 Gene: Characteristics, Tissue-Specific Expression, and Regulation of Expression by Estrogen

    No full text
    Serpins, a group of proteins with similar structural and functional properties, were first identified based on their unique mechanism of action: their inhibition of proteases. While most serpins have inhibitory roles, certain serpins are not involved in canonical proteolytic cascades but perform diverse functions including storage of ovalbumin in egg white, transport of hormones (thyroxine- and cortisol-binding globulin), and suppression of tumors. Of these, serpin peptidase inhibitor, clade B, member 11 (SERPINB11) is not an inhibitor of known proteases in humans and mice, and its function is unknown. In the present study, the SERPINB11 gene was cloned, and its expression profile was analyzed in various tissues from chickens. The chicken SERPINB11 gene has an open reading frame of 1346 nucleotides that encode a protein of 388 amino acids that has moderate homology (38.8%–42.3%) to mammalian SERPINB11 proteins. Importantly, SERPINB11 mRNA is most abundant in the chicken oviduct, specifically luminal and glandular epithelia, but it was not detected in any other chicken tissues of either sex. We then determined effects of diethylstilbestrol (DES; a synthetic nonsteroidal estrogen) on SERPINB11 expression in the chicken oviduct. Treatment of young chicks with DES induced SERPINB11 mRNA and protein only in luminal and glandular epithelial cells of the oviduct. Collectively, these results indicate that the novel estrogen-induced SERPINB11 gene is expressed only in epithelial cells of the chicken oviduct and implicate SERPINB11 in regulation of oviduct development and differentiated functions

    AHCYL1 Is Mediated by Estrogen-Induced ERK1/2 MAPK Cell Signaling and MicroRNA Regulation to Effect Functional Aspects of the Avian Oviduct

    Get PDF
    <div><p>S-adenosylhomocysteine hydrolase-like protein 1 (AHCYL1), also known as IP<sub>3</sub> receptor-binding protein released with IP<sub>3</sub> (IRBIT), regulates IP<sub>3</sub>-induced Ca<sup>2+</sup> release into the cytoplasm of cells. AHCYL1 is a critical regulator of early developmental stages in zebrafish, but little is known about the function of AHCYL1 or hormonal regulation of expression of the <em>AHCYL1</em> gene in avian species. Therefore, we investigated differential expression profiles of the <em>AHCYL1</em> gene in various adult organs and in oviducts from estrogen-treated chickens. Chicken <em>AHCYL1</em> encodes for a protein of 540 amino acids that is highly conserved and has considerable homology to mammalian AHCYL1 proteins (>94% identity). <em>AHCYL1</em> mRNA was expressed abundantly in various organs of chickens. Further, the synthetic estrogen agonist induced <em>AHCYL1</em> mRNA and protein predominantly in luminal and glandular epithelial cells of the chick oviduct. In addition, estrogen activated AHCYL1 through the ERK1/2 signal transduction cascade and that activated expression of AHCYL1 regulated genes affecting oviduct development in chicks as well as calcium release in epithelial cells of the oviduct. Also, microRNAs, <em>miR-124a, miR-1669, miR-1710</em> and <em>miR-1782</em> influenced <em>AHCYL1</em> expression <em>in vitro</em> via its 3β€²-UTR which suggests that post-transcriptional events are involved in the regulation of <em>AHCYL1</em> expression in the chick oviduct. In conclusion, these results indicate that <em>AHCYL1</em> is a novel estrogen-stimulated gene expressed in epithelial cells of the chicken oviduct that likely affects growth, development and calcium metabolism of the mature oviduct of hens via an estrogen-mediated ERK1/2 MAPK cell signaling pathway.</p> </div

    Avian SERPINB11 gene: a marker for ovarian endometrioid cancer in chickens

    No full text
    As serine and cysteine proteinase inhibitors, serpins, such as SERPINB5, cause ovarian, colorectal and pancreatic adenocarcinomas. We identified SERPINB11 as a novel estrogen-induced gene in chickens during oviduct development. The chicken is a unique animal model for research on human ovarian cancer, because it spontaneously develops epithelial cell-derived ovarian cancer as in women. Therefore, this study investigated the expression pattern, CpG methylation status, and miRNA regulation of the SERPINB11 gene in normal and cancerous ovaries from chickens. Our results indicate that SERPINB11 is most abundant in the glandular epithelium of endometrioid adenocarcinoma of cancerous, but not normal, ovaries of hens. In addition, bisulfite sequencing revealed that about 30% of -110 CpG sites are methylated in ovarian cancer cells, whereas -110 CpG sites are demethylated in normal ovarian cells. Next, we determined whether miR-1582 influences SERPINB11 expression via its 3'UTR and found that it does not directly target the 3'UTR of SERPINB11 mRNA. Therefore, it is unlikely that post-transcriptional regulation influences SERPINB11 expression in the chicken ovary. On the other hand, in human ovarian cancer cells such as OVCAR-3, SKOV-3 and PA-1 cells, immunoreactive SERPINB11 protein was predominant in the cytoplasm and had a similar expression pattern to that in chicken ovarian cancer cells. Collectively, these results suggest that SERPINB11 is a biomarker for chicken ovarian endometrioid carcinoma that could be used for diagnosis and monitoring effects of therapies for the disease in women
    corecore