1,182 research outputs found

    Finite element simulation of powder compaction via shock consolidation using gas-gun system

    Get PDF
    Shock consolidation is a promising method for consolidation of nanocrystalline metallic powders since it can prevent grain growth of nanopowders during the process due to very short processing time. However, internal cracks often occurs in powder compacts during the shock consolidation process. In this paper, finite element simulations showed that reflected tensile wave causes spall phenomena resulting internal crack of powder compaction during shock compaction process. To reduce spall phenomena, FEM simulation with changing compaction die's geometry was performed to find out relationship between shape and tensile wave intensity. Based on FEM results, new compaction die was designed and bulk nanocrystalline Cu are obtained using new compaction die. (C) 2014 Published by Elsevier Ltd.open1111Ysciescopu

    A Mechanistic Understanding of a Binary Additive System to Synergistically Boost Efficiency in All-Polymer Solar Cells

    Get PDF
    All-polymer solar cells are herein presented utilizing the PBDTTT-CT donor and the P(NDI2OD-T2) acceptor with 1,8-diiodooctane (DIO) and 1-chloronaphthalene (CN) binary solvent additives. A systematic study of the polymer/polymer bulk heterojunction photovoltaic cells processed from the binary additives revealed that the microstructures and photophysics were quite different from those of a pristine system. The combination of DIO and CN with a DIO/CN ratio of 3:1 (3 vol% DIO, 1 vol% CN and 96 vol% o-DCB) led to suitable penetrating polymer networks, efficient charge generation and balanced charge transport, which were all beneficial to improving the efficiency. This improvement is attributed to increase in power conversion efficiency from 2.81% for a device without additives to 4.39% for a device with the binary processing additives. A detailed investigation indicates that the changes in the polymer: polymer interactions resulted in the formation of a percolating nasnoscale morphology upon processing with the binary additives. Depth profile measurements with a two-dimensional grazing incidence wide-angle X-ray scattering confirm this optimum phase feature. Furthermore impedance spectroscopy also finds evidence for synergistically boosting the device performance.112218Ysciescopu

    Yangian symmetry and bound states in AdS/CFT boundary scattering

    Full text link
    We consider the problem of boundary scattering for Y=0 maximal giant graviton branes. We show that the boundary S-matrix for the fundamental excitations has a Yangian symmetry. We then exploit this symmetry to determine the boundary S-matrix for two-particle bound states. We verify that this boundary S-matrix satisfies the boundary Yang-Baxter equations.Comment: 17 page

    Methods for determining the optimal arrangement of water deluge systems on offshore installations

    Get PDF
    Offshore installations are prone to fire and/or explosion accidents. Fires have particularly serious consequences due to their high temperatures and heat flux, which affect humans, structures and environments alike. Due to the hydrocarbon explosions caused by delayed ignition following gas dispersion, fires can be the result of immediate ignition after gas release. Accordingly, it can be difficult to decrease their frequency, which is an element of risk (risk=frequency×consequence), using an active protection system (APS) such as gas detectors capable of shutting down the operation. Thus, it is more efficient to reduce the consequence using a passive protection system (PSS) such as water spray. It is important to decide the number and location of water deluge systems, thus the aim of this study is to introduce a new procedure for optimising the locations of water deluge systems using the water deluge location index (WLI) proposed herein. The locations of water deluge systems are thus optimised based on the results of credible fire scenarios using a three-dimensional computational fluid dynamics (CFD) tool. The effects of water spray and the effectiveness of the WLI are investigated in comparison with uniformly distributed sprays

    Serration phenomena occurring during tensile tests of three high-manganese TWinning Induced Plasticity (TWIP) steels

    Get PDF
    In this study, the serration phenomena of two high-Mn TWIP steels and an Al-added TWIP steel were examined by tensile tests, and were explained by the microstructural evolution including formation of localized Portevin-Le Chatelier deformation bands and twins. In stress-strain curves of the high-Mn steels, serrations started in a fine and short shape, and their height and periodic interval increased with increasing strain, whereas the Al-added steel did not show any serrations. According to digital images of strain rate and strain obtained from a vision strain gage system, deformation bands were initially formed at the upper region of the gage section, and moved downward along the tensile loading direction. The time when the band formation started was matched with the time when one serration occurred in the stress-time curve. This serration behavior was generally explained by dynamic strain aging, which was closely related with the formation of deformation bands. (C) The Minerals, Metals & Materials Society and ASM International 2013ope

    On the reflection of magnon bound states

    Full text link
    We investigate the reflection of two-particle bound states of a free open string in the light-cone AdS_5 x S^5 string sigma model, for large angular momentum J=J_56 and ending on a D7 brane which wraps the entire AdS_5 and a maximal S^3 of S^5. We use the superspace formalism to analyse fundamental and two-particle bound states in the cases of supersymmetry-preserving and broken-supersymmetry boundaries. We find the boundary S-matrices corresponding to bound states both in the bulk and on the boundary.Comment: 35 pages, v2: few typos and ref corrected, accepted for publication in JHE

    Evaluation of 3D printed PCL/PLGA/beta-TCP versus collagen membranes for guided bone regeneration in a beagle implant model

    Get PDF
    Here, we compared 3D-printed polycaprolactone/poly(lactic-co-glycolic acid)/beta-tricalcium phosphate (PCL/PLGA/beta-TCP) membranes with the widely used collagen membranes for guided bone regeneration (GBR) in beagle implant models. For mechanical property comparison in dry and wet conditions and cytocompatibility determination, we analyzed the rate and pattern of cell proliferation of seeded fibroblasts and preosteoblasts using the cell counting kit-8 assay and scanning electron microscopy. Osteogenic differentiation was verified using alizarin red S staining. At 8 weeks following implantation in vivo using beagle dogs, computed tomography and histological analyses were performed after sacrifice. Cell proliferation rates in vitro indicated that early cell attachment was higher in collagen than in PCL/PLGA/beta-TCP membranes; however, the difference subsided by day 7. Similar outcomes were found for osteogenic differentiation, with approximately 2.5 times greater staining in collagen than PCL/PLGA/beta-TCP, but without significant difference by day 14. In vivo, bone regeneration in the defect area, represented by new bone formation and bone-to-implant contact, paralleled those associated with collagen membranes. However, tensile testing revealed that whereas the PCL/PLGA/beta-TCP membrane mechanical properties were conserved in both wet and dry states, the tensile property of collagen was reduced by 99% under wet conditions. Our results demonstrate in vitro and in vivo that PCL/PLGA/beta-TCP membranes have similar levels of biocompatibility and bone regeneration as collagen membranes. In particular, considering that GBR is always applied to a wet environment (e.g. blood, saliva), we demonstrated that PCL/PLGA/beta-TCP membranes maintained their form more reliably than collagen membranes in a wet setting, confirming their appropriateness as a GBR membrane.11109Ysciescopu

    Drop Traffic in Microfluidic Ladder Networks with Fore-Aft Structural Asymmetry

    Full text link
    We investigate the dynamics of pairs of drops in microfluidic ladder networks with slanted bypasses, which break the fore-aft structural symmetry. Our analytical results indicate that unlike symmetric ladder networks, structural asymmetry introduced by a single slanted bypass can be used to modulate the relative drop spacing, enabling them to contract, synchronize, expand, or even flip at the ladder exit. Our experiments confirm all these behaviors predicted by theory. Numerical analysis further shows that while ladder networks containing several identical bypasses are limited to nearly linear transformation of input delay between drops, mixed combination of bypasses can cause significant non-linear transformation enabling coding and decoding of input delays.Comment: 4 pages, 5 figure

    The secret symmetries of the AdS/CFT reflection matrices

    Full text link
    We find new twisted Yangian symmetries of the AdS/CFT reflection matrices for the Y=0 maximal giant graviton and D5-brane. These new symmetries originate from the known secret symmetries of the Yangian symmetry of the AdS/CFT S-matrix.Comment: 9 pages, v2: published versio

    Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling

    Get PDF
    We present an analytical model describing the full electromagnetic propagation in a THz time-domain spectroscopy (THz-TDS) system, from the THz pulses via Optical Rectification to the detection via Electro Optic-Sampling. While several investigations deal singularly with the many elements that constitute a THz-TDS, in our work we pay particular attention to the modelling of the time-frequency behaviour of all the stages which compose the experimental set-up. Therefore, our model considers the following main aspects: (i) pump beam focusing into the generation crystal; (ii) phase-matching inside both the generation and detection crystals; (iii) chromatic dispersion and absorption inside the crystals; (iv) Fabry-Perot effect; (v) diffraction outside, i.e. along the propagation, (vi) focalization and overlapping between THz and probe beams, (vii) electro-optic sampling. In order to validate our model, we report on the comparison between the simulations and the experimental data obtained from the same set-up, showing their good agreement
    corecore