10 research outputs found
Monitoring the coastal zone using earth observation::application of linear spectral unmixing to coastal dune systems in Wales
Coastal sand dune systems across temperate Europe are presently characterized by a high level of ecological stabilization and a subsequent loss of biological diversity. The use of continuous monitoring within these systems is vital to the preservation of species richness, particularly with regard to the persistence of early stage pioneer species dependent on a strong sediment supply. Linear spectral unmixing was applied to archived Landsat data (1975?2014) and historical aerial photography (1941?1962) for monitoring bare sand (BS) cover dynamics as a proxy for ecological dune stabilization. Using this approach, a time series of change was calculated for Kenfig Burrows, a 6-km2 stabilized dune system in South Wales, during 1941?2014. The time series indicated that a rapid level of stabilization had occurred within the study area over a period of 75 years. Accuracy assessment of the data indicated the suitability of medium-resolution imagery with an RMSE of <10% across all images and a difference of <3% between observed and predicted BS area. Temporal resolution was found to be a significant factor in the representation of BS cover with fluctuations occurring on a sub-decadal scale, outside of the margin of error introduced through the use of medium-resolution Landsat imagery. This study demonstrates a tractable approach for mapping and monitoring ecologically sensitive regions at a subLandsat pixel levelpublishersversionPeer reviewe
Climate change and human health in the Eastern Mediterranean and middle east: Literature review, research priorities and policy suggestions
Human health is linked to climatic factors in complex ways, and climate change can have profound direct and indirect impacts on the health status of any given region. Susceptibility to climate change is modulated by biological, ecological and socio-political factors such as age, gender, geographic location, socio-economic status, occupation, health status and housing conditions, among other. In the Eastern Mediterranean and Middle East (EMME), climatic factors known to affect human health include extreme heat, water shortages and air pollution. Furthermore, the epidemiology of vector-borne diseases (VBDs) and the health consequences of population displacement are also influenced by climate change in this region. To inform future policies for adaptation and mitigation measures, and based on an extensive review of the available knowledge, we recommend several research priorities for the region. These include the generation of more empirical evidence on exposure-response functions involving climate change and specific health outcomes, the development of appropriate methodologies to evaluate the physical and psychological effects of climate change on vulnerable populations, determining how climate change alters the ecological determinants of human health, improving our understanding of the effects of long-term exposure to heat stress and air pollution, and evaluating the interactions between adaptation and mitigation strategies. Because national boundaries do not limit most climate-related factors expected to impact human health, we propose that adaptation/mitigation policies must have a regional scope, and therefore require collaborative efforts among EMME nations. Policy suggestions include a decisive region-wide decarbonisation, the integration of environmentally driven morbidity and mortality data throughout the region, advancing the development and widespread use of affordable technologies for the production and management of drinking water by non-traditional means, the development of comprehensive strategies to improve the health status of displaced populations, and fostering regional networks for monitoring and controlling the spread of infectious diseases and disease vectors
Sand Dune Encroachment and Desertification Processes of the Rigboland Sand Sea, Central Iran
Early studies on sand dune movement and desertification in Iran have not always been convincingly demonstrated because of problems with the field-based measurements. In some areas where various land uses have been engulfed by aeolian sand dunes, desertification is clear, but in other less settled areas, it may not be so obvious. The objective of this study is to demonstrate encroachments of the Rigboland sand sea, central Iran, in its different directions and variable magnitude rates. Determining the rate and direction of the sand sea movements is critical for specifying which lands should be prioritized and quickly protected. The study has trialed a change detection technique which uses a Cross-Tabulation module to compare two available LandsatTM images over the Rigboland sand sea. This indicates that within a ten-year span (from 1988 to 1998) more than 200 ha/yr were added to the Rigboland sand sea, from the alluvial fan landforms in the eastern upstream, outer margins of the Rigboland sand sea. Coupled with GIS techniques, this type of analysis of the remote sensing (RS) images provides an effective tool for the monitoring and prognostication of sand dune movement and sand sea change.</p