28 research outputs found

    Post-exposure prophylaxis for SIV revisited: Animal model for HIV prevention

    Get PDF
    BACKGROUND: A 4-week, uninterrupted treatment with 9-(2-phosphonyl-methoxypropyly)adenine (PMPA, commonly called tenofovir) completely prevents simian immunodeficiency virus (SIV(mne)) infection in cynomolgus macaques if treatment begins within 24 hours after SIV(mne )inoculation, but is less effective if treatment is delayed or duration of treatment is shortened. Critical factors for efficacy include timing and duration of treatment, potency of antiretroviral drug and a contribution from antiviral immune responses. Therefore, we evaluated the impact of one or more treatment interruptions plus SIV(mne )re-exposures on efficacy of PMPA treatment to prevent SIV(mne )infection in cynomolgus macaques. We also evaluated whether macaques with pre-existing SIV immune responses show increased efficacy of treatment. Eight PMPA-treated, virus-negative and seronegative macaques, and five PMPA-treated, virus-negative but weakly or strongly seropositive macaques were re-inoculated with SIV(mne )and treated with PMPA starting 24 hr post inoculation. Thereafter, they received either a 5-week treatment involving one interruption plus one SIV(mne )challenge or a 10-week treatment involving six interruptions plus six SIV(mne )challenges early during treatment. Parameters measured were plasma SIV RNA, SIV-antibody response, CD4+ T lymphocyte subsets and in vivo CD8+ cell-suppression of virus infection. RESULTS: All seronegative macaques developed persistent antibody response beginning 4 to 8 weeks after stopping PMPA-treatment in absence of viremia in a majority of macaques and coinciding with onset of intermittent viremia in other macaques. In contrast, all weakly or strongly seropositive macaques showed immediate increase in titers (> 1600) of SIV antibodies, even before the end of PMPA-treatment, and in absence of detectable viremia. However, in vivo CD8+ -cell depletion revealed CD8 cell-suppression of viremia and persistence of virus in the macaques as long as 2 years after PMPA-treatment, even in aviremic macaques. Unlike untreated macaques, a treated macaque controlled viral replication and blocked CD4+ T cell depletion when challenged with a heterologus chimeric SIV/HIV-1 virus called SHIV(89.6P.) CONCLUSION: A single interruption plus one SIV(mne )challenge was as sufficient as six interruptions plus six SIV(mne )challenges in reducing efficacy of PMPA, but results in long-term persistence of virus infection suppressed by CD8+ cells. Efficacy of PMPA treatment was highest in macaques with pre-existing SIV immune responses

    RT-SHIV, an infectious CCR5-tropic chimeric virus suitable for evaluating HIV reverse transcriptase inhibitors in macaque models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are an important category of drugs for both chemotherapy and prevention of human immunodeficiency virus type 1 (HIV-1) infection. However, current non-human primate (NHP) models utilizing simian immunodeficiency virus (SIV) or commonly used chimeric SHIV (SIV expressing HIV-1 envelope) are inadequate due to the insensitivity to NNRTIs. To develop a NHP model for evaluation of NNRTI compounds, we characterized a RT-SHIV virus that was assembled by replacing the SIV<sub>mac239 </sub>reverse transcriptase (RT) with that of HIV-1HXB2. Since RT-SHIV exhibited <it>in vitro </it>characteristics of high infectivity, CCR5-usage, and sensitivity to HIV-1 specific NNRTIs, this virus was thought to be suitable for mucosal transmission and then was used to carry out a vaginal transmission study in pigtail macaques (<it>Macaca nemestrina</it>).</p> <p>Results</p> <p>RT-SHIV exhibited <it>in vitro </it>characteristics of an infectious CCR5-tropic chimeric virus. This virus was not only highly sensitive to HIV-1 RT specific NNRTIs; its replication was also inhibited by a variety of NRTIs and protease inhibitors. For <it>in vivo </it>vaginal transmission studies, macaques were either pretreated with a single dose of DMPA (depot medroxyprogesterone acetate) or left untreated before intravaginal inoculation with 500 or 1,000 TCID<sub>50 </sub>of RT-SHIV. All macaques became systemically infected by 2 or 3 weeks post-inoculation exhibiting persistent high viremia, marked CD4<sup>+</sup>T cell depletion, and antiviral antibody response. DMPA-pretreated macaques showed a higher mean plasma viral load after the acute infection stage, highly variable antiviral antibody response, and a higher incidence of AIDS-like disease as compared with macaques without DMPA pretreatment.</p> <p>Conclusion</p> <p>This chimeric RT-SHIV has exhibited productive replication in both macaque and human PBMCs, predominantly CCR5-coreceptor usage for viral entry, and sensitivity to NNRTIs as well as other anti-HIV compounds. This study demonstrates rapid systemic infection in macaques following intravaginal exposure to RT-SHIV. This RT-SHIV/macaque model could be useful for evaluation of NNRTI-based therapies, microbicides, or other preventive strategies.</p

    Functional gene analysis of individual response to challenge of SIVmac239 in M. mulatta PBMC culture

    Get PDF
    AbstractIt has previously been shown in macaques that individual animals exhibit varying responses to challenge with the same strain of SIV. We attempted to elucidate these differences using functional genomics and correlate them to biological response. Unfractionated PBMC from three rhesus macaques were isolated, activated, and infected with SIVmac239. Interestingly, one of the three animals used for these experiments exhibited a completely unique response to infection relative to the other two. After repeated attempts to infect the PBMC from this animal, little or no infectivity was seen across the time points considered, and corresponding to this apparent lack of infection, few genes were seen to be differentially expressed when compared to mock-infected cells. For the remaining two animals, gene expression analysis showed that while they exhibited responses for the same groups of pathways, these responses included differences specific to the individual animal at the gene level. In instances where the patterns of differential gene expression differed between these animals, the genes being differentially expressed were associated with the same categories of biological process, mainly immune response and cell signaling. At the pathway level, these animals again exhibited similar responses that could be predicted based on the experimental conditions. Even in these expected results, the degree of response and the specific genes being regulated differed greatly from animal to animal. The differences in gene expression on an individual level have the potential to be used as markers in identification of animals suitable for lentiviral infection experiments. Our results highlight the importance of individual variation in response to viral challenge

    Evidence for immune-mediated reduction of viral replication in Macaca nemestrina mucosally immunized with inactivated SHIV89.6

    Get PDF
    AbstractAlthough most HIV-1 infections worldwide result from heterosexual transmission, most vaccine candidates have focused on induction of systemic immunity and protection. We hypothesized that combining systemic priming with mucosal boosting would induce mucosal immunity that would protect from intravaginal challenge. Macaques were primed systemically with recombinant vaccinia viruses and boosted mucosally using inactivated SHIV89.6 plus adjuvant. Other animals received protein boosts with adjuvant alone. Priming and boosting induced antiviral IgG and IgA antibodies. Such antibodies were induced to a lesser degree in animals receiving boosts alone. Anti-SHIV T cell responses were induced only in the prime-boost animals. Immunized animals and controls were challenged intravaginally with SHIV89.6 and significant reductions in proviral and viral RNA loads were observed in the prime-boost animals. The boost-only animals did not have significant viral load reductions. These data suggest that cellular immunity was required for protection from intravaginal challenge. This immunization regimen provides a promising lead for vaccine development

    Analysis of the Macaca mulatta transcriptome and the sequence divergence between Macaca and human

    Get PDF
    We report the initial sequencing and comparative analysis of the Macaca mulatta transcriptome. Cloned sequences from 11 tissues, nine animals, and three species (M. mulatta, M. fascicularis, and M. nemestrina) were sampled, resulting in the generation of 48,642 sequence reads. These data represent an initial sampling of the putative rhesus orthologs for 6,216 human genes. Mean nucleotide diversity within M. mulatta and sequence divergence among M. fascicularis, M. nemestrina, and M. mulatta are also reported

    Adaptations in a hierarchical food web of southeastern Lake Michigan

    Get PDF
    Two issues in ecological network theory are: (1) how to construct an ecological network model and (2) how do entire networks (as opposed to individual species) adapt to changing conditions? We present a novel method for constructing an ecological network model for the food web of southeastern Lake Michigan (USA) and we identify changes in key system properties that are large relative to their uncertainty as this ecological network adapts fromone time point to a second time point in response to multiple perturbations. To construct our foodweb for southeastern Lake Michigan,we followed the list of seven recommendations outlined in Cohen et al. [Cohen, J.E., et al., 1993.Improving foodwebs. Ecology 74, 252–258] for improving food webs. We explored two inter-related extensions of hierarchical system theory with our food web; the first one was that subsystems react to perturbations independently in the short-term and the second onewas that a system’s properties change at a slower rate than its subsystems’ properties. We used Shannon’s equations to provide quantitative versions of the basic food web properties: number of prey, number of predators, number of feeding links, and connectance (or density).We then compared these properties between the two time-periods by developing distributions of each property for each time period that took uncertainty about the property into account.We compared these distributions, and concluded that non-overlapping distributions indicated changes in these properties that were large relative to their uncertainty. Two subsystems were identified within our food web system structure (p \u3c 0.001). One subsystem had more non-overlapping distributions in food web properties between Time 1 and Time 2 than the other subsystem. The overall system had all overlapping distributions in food web properties between Time 1 and Time 2. These results supported both extensions of hierarchical systems theory. Interestingly, the subsystemwithmore non-overlapping distributions in foodweb propertieswas the subsystemthat contained primarily benthic taxa, contrary to expectations that the identifiedmajor perturbations (lower phosphorous inputs and invasive species) would more greatly affect the subsystem containing primarily pelagic taxa. Future food-web research shouldemploy rigorous statistical analysis and incorporate uncertainty in food web properties for a better understanding of how ecological networks adapt

    A Latent Pro-survival Function for the Mir-290-295 Cluster in Mouse Embryonic Stem Cells

    Get PDF
    MicroRNAs (miRNAs) post-transcriptionally regulate the expression of thousands of distinct mRNAs. While some regulatory interactions help to maintain basal cellular functions, others are likely relevant in more specific settings, such as response to stress. Here we describe such a role for the mir-290-295 cluster, the dominant miRNA cluster in mouse embryonic stem cells (mESCs). Examination of a target list generated from bioinformatic prediction, as well as expression data following miRNA loss, revealed strong enrichment for apoptotic regulators, two of which we validated directly: Caspase 2, the most highly conserved mammalian caspase, and Ei24, a p53 transcriptional target. Consistent with these predictions, mESCs lacking miRNAs were more likely to initiate apoptosis following genotoxic exposure to gamma irradiation or doxorubicin. Knockdown of either candidate partially rescued this pro-apoptotic phenotype, as did transfection of members of the mir-290-295 cluster. These findings were recapitulated in a specific mir-290-295 deletion line, confirming that they reflect miRNA functions at physiological levels. In contrast to the basal regulatory roles previously identified, the pro-survival phenotype shown here may be most relevant to stressful gestations, where pro-oxidant metabolic states induce DNA damage. Similarly, this cluster may mediate chemotherapeutic resistance in a neoplastic context, making it a useful clinical target.National Institutes of Health (U.S.) (NIH grant RO1-GM34277)National Cancer Institute (U.S.) (NCI grant PO1-CA42063)National Cancer Institute (U.S.) (NCI Cancer Center Support (core) grant P30-CA14051

    Adaptations in a hierarchical food web of southeastern Lake Michigan

    Get PDF
    Two issues in ecological network theory are: (1) how to construct an ecological network model and (2) how do entire networks (as opposed to individual species) adapt to changing conditions? We present a novel method for constructing an ecological network model for the food web of southeastern Lake Michigan (USA) and we identify changes in key system properties that are large relative to their uncertainty as this ecological network adapts fromone time point to a second time point in response to multiple perturbations. To construct our foodweb for southeastern Lake Michigan,we followed the list of seven recommendations outlined in Cohen et al. [Cohen, J.E., et al., 1993.Improving foodwebs. Ecology 74, 252–258] for improving food webs. We explored two inter-related extensions of hierarchical system theory with our food web; the first one was that subsystems react to perturbations independently in the short-term and the second onewas that a system’s properties change at a slower rate than its subsystems’ properties. We used Shannon’s equations to provide quantitative versions of the basic food web properties: number of prey, number of predators, number of feeding links, and connectance (or density).We then compared these properties between the two time-periods by developing distributions of each property for each time period that took uncertainty about the property into account.We compared these distributions, and concluded that non-overlapping distributions indicated changes in these properties that were large relative to their uncertainty. Two subsystems were identified within our food web system structure (p \u3c 0.001). One subsystem had more non-overlapping distributions in food web properties between Time 1 and Time 2 than the other subsystem. The overall system had all overlapping distributions in food web properties between Time 1 and Time 2. These results supported both extensions of hierarchical systems theory. Interestingly, the subsystemwithmore non-overlapping distributions in foodweb propertieswas the subsystemthat contained primarily benthic taxa, contrary to expectations that the identifiedmajor perturbations (lower phosphorous inputs and invasive species) would more greatly affect the subsystem containing primarily pelagic taxa. Future food-web research shouldemploy rigorous statistical analysis and incorporate uncertainty in food web properties for a better understanding of how ecological networks adapt
    corecore