2,206 research outputs found

    The role of active movement in fungal ecology and community assembly

    Get PDF
    Movement ecology aims to provide common terminology and an integrative framework of movement research across all groups of organisms. Yet such work has focused on unitary organisms so far, and thus the important group of filamentous fungi has not been considered in this context. With the exception of spore dispersal, movement in filamentous fungi has not been integrated into the movement ecology field. At the same time, the field of fungal ecology has been advancing research on topics like informed growth, mycelial translocations, or fungal highways using its own terminology and frameworks, overlooking the theoretical developments within movement ecology. We provide a conceptual and terminological framework for interdisciplinary collaboration between these two disciplines, and show how both can benefit from closer links: We show how placing the knowledge from fungal biology and ecology into the framework of movement ecology can inspire both theoretical and empirical developments, eventually leading towards a better understanding of fungal ecology and community assembly. Conversely, by a greater focus on movement specificities of filamentous fungi, movement ecology stands to benefit from the challenge to evolve its concepts and terminology towards even greater universality. We show how our concept can be applied for other modular organisms (such as clonal plants and slime molds), and how this can lead towards comparative studies with the relationship between organismal movement and ecosystems in the focus

    Effect of different root endophytic fungi on plant community structure in experimental microcosms

    Get PDF
    Understanding the effects of root-associated microbes in explaining plant community patterns represents a challenge in community ecology. Although typically overlooked, several lines of evidence point out that nonmycorrhizal, root endophytic fungi in the Ascomycota may have the potential to drive changes in plant community ecology given their ubiquitous presence, wide host ranges, and plant species-specific fitness effects. Thus, we experimentally manipulated the presence of root endophytic fungal species in microcosms and measured its effects on plant communities. Specifically, we tested whether (1) three different root endophyte species can modify plant community structure; (2) those changes can also modified the way plant respond to different soil types; and (3) the effects are modified when all the fungi are present. As a model system, we used plant and fungal species that naturally co-occur in a temperate grassland. Further, the soil types used in our experiment reflected a strong gradient in soil texture that has been shown to drive changes in plant and fungal community structure in the field. Results showed that each plant species responded differently to infection, resulting in distinct patterns of plant community structure depending on the identity of the fungus present. Those effects depended on the soil type. For example, large positive effects due to presence of the fungi were able to compensate for less nutrients levels in one soil type. Further, host responses when all three fungi were present were different from the ones observed in single fungal inoculations, suggesting that endophyte–endophyte interactions may be important in structuring plant communities. Overall, these results indicate that plant responses to changes in the species identity of nonmycorrhizal fungal community species and their interactions can modify plant community structure

    Basic principles of temporal dynamics

    Get PDF
    All ecological disciplines consider temporal dynamics, although relevant concepts have been developed almost independently. We here introduce basic principles of temporal dynamics in ecology. We figured out essential features that describe temporal dynamics by finding similarities among about 60 ecological concepts and theories. We found that considering the hierarchically nested structure of complexity in temporal patterns (i.e. hierarchical complexity) can well describe the fundamental nature of temporal dynamics by expressing which patterns are observed at each scale. Across all ecological levels, driver–response relationships can be temporally variant and dependent on both short- and long-term past conditions. The framework can help with designing experiments, improving predictive power of statistics, and enhancing communications among ecological disciplines

    Citología cutánea veterinaria

    Get PDF
    La citología es una herramienta cada vez más utilizada y reconocida en el diagnóstico veterinario, y ha conseguido un sólido asentamiento en muchos países donde se utiliza de forma rutinaria en clínica. Es así porque aporta información que el veterinario demanda de forma rápida, muy deseable a la hora de instaurar tratamiento, sencilla, barata, indolora y muy versátil, ya que todas las células del organismo pueden someterse a estudio. Es por ello básicamente práctica y eficaz. Debido a la cantidad de lesiones que aparecen en la piel y tejido subcutáneo la citología en estas patologías para realizar un primer acercamiento diagnóstico, que puede ser definitivo en ocasiones, y reducir la lista de diagnósticos diferenciales posibles e incluso ahorrar en tiempo, coste y la realización de otras pruebas adicionales. Este artículo va dirigido al estudio de la citología cutánea, considerando la correcta obtención de muestras, la población celular que podemos encontrar y los procesos más frecuentemente implicados

    Network traits predict ecological strategies in fungi

    Get PDF
    Colonization of terrestrial environments by filamentous fungi relies on their ability to form networks that can forage for and connect resource patches. Despite the importance of these networks, ecologists rarely consider network features as functional traits because their measurement and interpretation are conceptually and methodologically difficult. To address these challenges, we have developed a pipeline to translate images of fungal mycelia, from both micro- and macro-scales, to weighted network graphs that capture ecologically relevant fungal behaviour. We focus on four properties that we hypothesize determine how fungi forage for resources, specifically: connectivity; relative construction cost; transport efficiency; and robustness against attack by fungivores. Constrained ordination and Pareto front analysis of these traits revealed that foraging strategies can be distinguished predominantly along a gradient of connectivity for micro- and macro-scale mycelial networks that is reminiscent of the qualitative ‘phalanx’ and ‘guerilla’ descriptors previously proposed in the literature. At one extreme are species with many inter-connections that increase the paths for multidirectional transport and robustness to damage, but with a high construction cost; at the other extreme are species with an opposite phenotype. Thus, we propose this approach represents a significant advance in quantifying ecological strategies for fungi using network information

    Drought legacy effects on root morphological traits and plant biomass via soil biota feedback

    Get PDF
    1. Drought causes soil feedback effects on plant performance. However, how the linkages between conditioned soil biota and root traits contribute to explain plant–soil feedback (PSF) as a function of drought is unknown. 2. We utilized soil inoculum from a conditioning experiment where grassland species grew under well-watered and drought conditions, and their soil fungi were analyzed. Under well-watered conditions, we grew 21 grassland species with those inocula from either conspecific or heterospecific soils. At harvest, plant biomass and root traits were measured. 3. Negative PSF (higher biomass in heterospecific than in conspecific soils) was predominant, and favored in drought-conditioned soils. Previous drought affected the relationship between root traits and fungal groups. Specific root surface area (SRSA) was higher in heterospecific than in conspecific droughted soils and was linked to an increase in saprotroph richness. Overall, root diameter was higher in conspecific soils and was linked to mutualist and pathogen composition, whereas the decrease of root : shoot in heterospecific soils was linked to pathogenic fungi. 4. Drought legacy affects biomass and root morphological traits via conditioned soil biota, even after the drought conditions have disappeared. This provides new insights into the role that soil biota have modulating PSF responses to drought

    Hydrogen sulfide: From a toxic molecule to a key molecule of cell life

    Get PDF
    Hydrogen sulfide (H2S) has always been considered toxic, but a huge number of articles published more recently showed the beneficial biochemical properties of its endogenous production throughout all regna. In this review, the participation of H2S in many physiological and pathological processes in animals is described, and its importance as a signaling molecule in plant systems is underlined from an evolutionary point of view. H2S quantification methods are summarized and persulfidation is described as the underlying mechanism of action in plants, animals and bacteria. This review aims to highlight the importance of its crosstalk with other signaling molecules and its fine regulation for the proper function of the cell and its survival.EU Marie Skłodowska-Curie 834120Junta de Andalucía US-125578

    Does native Trypanosoma cruzi calreticulin mediate growth inhibition of a mammary tumor during infection?

    Get PDF
    Indexación: Web of Science.Background: For several decades now an antagonism between Trypanosoma cruzi infection and tumor development has been detected. The molecular basis of this phenomenon remained basically unknown until our proposal that T. cruzi Calreticulin (TcCRT), an endoplasmic reticulum-resident chaperone, translocated-externalized by the parasite, may mediate at least an important part of this effect. Thus, recombinant TcCRT (rTcCRT) has important in vivo antiangiogenic and antitumor activities. However, the relevant question whether the in vivo antitumor effect of T. cruzi infection is indeed mediated by the native chaperone (nTcCRT), remains open. Herein, by using specific modified anti-rTcCRT antibodies (Abs), we have neutralized the antitumor activity of T. cruzi infection and extracts thereof, thus identifying nTcCRT as a valid mediator of this effect. Methods: Polyclonal anti-rTcCRT F(ab')(2) Ab fragments were used to reverse the capacity of rTcCRT to inhibit EAhy926 endothelial cell (EC) proliferation, as detected by BrdU uptake. Using these F(ab')(2) fragments, we also challenged the capacity of nTcCRT, during T. cruzi infection, to inhibit the growth of an aggressive mammary adenocarcinoma cell line (TA3-MTXR) in mice. Moreover, we determined the capacity of anti-rTcCRT Abs to reverse the antitumor effect of an epimastigote extract (EE). Finally, the effects of these treatments on tumor histology were evaluated. Results: The rTcCRT capacity to inhibit ECs proliferation was reversed by anti-rTcCRT F(ab')(2) Ab fragments, thus defining them as valid probes to interfere in vivo with this important TcCRT function. Consequently, during infection, these Ab fragments also reversed the in vivo experimental mammary tumor growth. Moreover, anti-rTcCRT Abs also neutralized the antitumor effect of an EE, again identifying the chaperone protein as an important mediator of this anti mammary tumor effect. Finally, as determined by conventional histological parameters, in infected animals and in those treated with EE, less invasive tumors were observed while, as expected, treatment with F(ab')(2) Ab fragments increased malignancy. Conclusion: We have identified translocated/externalized nTcCRT as responsible for at least an important part of the anti mammary tumor effect of the chaperone observed during experimental infections with T. cruzi.http://bmccancer.biomedcentral.com/articles/10.1186/s12885-016-2764-

    Desafíos de tele-rehabilitación en niños con discapacidad en educación temprana

    Get PDF
    This research deals with the tele-rehabilitation service for children with disabilities in a post-Covid-19 era. There has been a boom with new working models and adaptation to new challenges and experiences of professionals in rehabilitation therapies. With such services as the most effective way to treat psychomotor deficits in children with disabilities, Rehabilitation Centers have reconfigured their planning by offering hybrid care, but there is a lack of integration of ICT for the delivery of these services through agile approaches. Under an Action-Design methodology, a survey was designed and applied to therapists from five Rehabilitation Centers in Mexico; focused on knowing four relevant aspects: Rehabilitation Teleworking; ICT in therapeutic activity; Communication between parents and Rehabilitation centers; and Patients. From the result, it can be inferred that there is a high level of interest at THE initial education in technological training and a need for higher quality stimulation tools and resources.Esta investigación trata sobre el servicio de Tele-rehabilitación para niños con discapacidad en una época post-Covid 19. Ha habido un auge con nuevos modelos de trabajo y la adaptación a nuevos retos y experiencias de los profesionales en terapias de rehabilitación. Con dichos servicios como la forma más efectiva de tratar el déficit psicomotor en niños con discapacidad, los Centros de Rehabilitación han reconfigurado su planificación ofreciendo atención híbrida, pero existe una falta de integración de las Tecnologías de la Información y la Comunicación (TIC) para la entrega de estos servicios a través de enfoques ágiles. Bajo una metodología de Diseño-Acción, se diseñó una encuesta aplicada a terapeutas de cinco Centros de Rehabilitación de México. De los resultados se puede inferir un alto interés de la educación a nivel inicial por la formación tecnológica y una necesidad de mayor calidad en las herramientas y recursos de estimulación
    corecore