1,040 research outputs found

    Self-Supervised Discovery of Anatomical Shape Landmarks

    Full text link
    Statistical shape analysis is a very useful tool in a wide range of medical and biological applications. However, it typically relies on the ability to produce a relatively small number of features that can capture the relevant variability in a population. State-of-the-art methods for obtaining such anatomical features rely on either extensive preprocessing or segmentation and/or significant tuning and post-processing. These shortcomings limit the widespread use of shape statistics. We propose that effective shape representations should provide sufficient information to align/register images. Using this assumption we propose a self-supervised, neural network approach for automatically positioning and detecting landmarks in images that can be used for subsequent analysis. The network discovers the landmarks corresponding to anatomical shape features that promote good image registration in the context of a particular class of transformations. In addition, we also propose a regularization for the proposed network which allows for a uniform distribution of these discovered landmarks. In this paper, we present a complete framework, which only takes a set of input images and produces landmarks that are immediately usable for statistical shape analysis. We evaluate the performance on a phantom dataset as well as 2D and 3D images.Comment: Early accept at MICCAI 202

    Evaluation of chloroform/methanol extraction to facilitate the study of membrane proteins of non-model plants

    Get PDF
    Membrane proteins are of great interest to plant physiologists because of their important function in many physiological processes. However, their study is hampered by their low abundance and poor solubility in aqueous buffers. Proteomics studies of non-model plants are generally restricted to gel-based methods. Unfortunately, all gel-based techniques for membrane proteomics lack resolving power. Therefore, a very stringent enrichment method is needed before protein separation. In this study, protein extraction in a mixture of chloroform and methanol in combination with gel electrophoresis is evaluated as a method to study membrane proteins in non-model plants. Benefits as well as disadvantages of the method are discussed. To demonstrate the pitfalls of working with non-model plants and to give a proof of principle, the method was first applied to whole leaves of the model plant Arabidopsis. Subsequently, a comparison with proteins extracted from leaves of the non-model plant, banana, was made. To estimate the tissue and organelle specificity of the method, it was also applied on banana meristems. Abundant membrane or lipid-associated proteins could be identified in both tissues, with the leaf extract yielding a higher number of membrane proteins

    Impaired Functions of Peripheral Blood Monocyte Subpopulations in Aged Humans

    Get PDF
    Aging is associated with increased susceptibility to microbial infections, and monocytes play an important role in microbial defense. In this study, we have identified and compared four subpopulations of monocytes (CD14++(high)CD16−, CD14+(low)CD16−, CD14++(high)CD16+, and CD14+(low)CD16+) in the peripheral blood of young and aged subjects with regard to their numbers, cytokine production, TLR expression, and phosphorylation of ERK1/2 in response to pam3Cys a TLR-1/2 ligand. Proportions and numbers of CD14++(high)CD16+ and CD14+(low)CD16+ monocytes were significantly increased, whereas proportions of CD14+(low)CD16− monocytes were decreased in aged subjects as compared to young subjects. In aged subjects, IL-6 production by all four subsets of monocytes was significantly decreased, whereas TNF-α production was decreased in monocyte subsets, except the CD14+(low)CD16− subset. A significantly reduced expression of TLR1 was observed in CD14++(high)CD16+ and CD14+(low)CD16+ monocyte subsets in aged subjects. Furthermore, following pam3Cys stimulation, ERK1/2 phosphorylation was significantly lower in CD14+(low)CD16+, CD14++(high)CD16+, and CD14+(low)CD16− subsets of monocytes from aged subjects. This is the first study of four subpopulations of monocytes in aging, which demonstrates that their functions are differentially impaired with regard to the production of cytokines, expression of TLR, and signaling via the ERK–MAPK pathway. Finally, changes in the number of monocyte subsets, and impairment of TLR1 expression, TNF-α production, and EK1/2 phosphorylation was more consistent in CD16+ monocyte subsets regardless of expression of CD14high or CD14+low, therefore highlighting the significance of further subdivision of monocytes into four subpopulations

    A Novel Biclustering Approach to Association Rule Mining for Predicting HIV-1–Human Protein Interactions

    Get PDF
    Identification of potential viral-host protein interactions is a vital and useful approach towards development of new drugs targeting those interactions. In recent days, computational tools are being utilized for predicting viral-host interactions. Recently a database containing records of experimentally validated interactions between a set of HIV-1 proteins and a set of human proteins has been published. The problem of predicting new interactions based on this database is usually posed as a classification problem. However, posing the problem as a classification one suffers from the lack of biologically validated negative interactions. Therefore it will be beneficial to use the existing database for predicting new viral-host interactions without the need of negative samples. Motivated by this, in this article, the HIV-1–human protein interaction database has been analyzed using association rule mining. The main objective is to identify a set of association rules both among the HIV-1 proteins and among the human proteins, and use these rules for predicting new interactions. In this regard, a novel association rule mining technique based on biclustering has been proposed for discovering frequent closed itemsets followed by the association rules from the adjacency matrix of the HIV-1–human interaction network. Novel HIV-1–human interactions have been predicted based on the discovered association rules and tested for biological significance. For validation of the predicted new interactions, gene ontology-based and pathway-based studies have been performed. These studies show that the human proteins which are predicted to interact with a particular viral protein share many common biological activities. Moreover, literature survey has been used for validation purpose to identify some predicted interactions that are already validated experimentally but not present in the database. Comparison with other prediction methods is also discussed

    A biclustering algorithm based on a Bicluster Enumeration Tree: application to DNA microarray data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In a number of domains, like in DNA microarray data analysis, we need to cluster simultaneously rows (genes) and columns (conditions) of a data matrix to identify groups of rows coherent with groups of columns. This kind of clustering is called <it>biclustering</it>. Biclustering algorithms are extensively used in DNA microarray data analysis. More effective biclustering algorithms are highly desirable and needed.</p> <p>Methods</p> <p>We introduce <it>BiMine</it>, a new enumeration algorithm for biclustering of DNA microarray data. The proposed algorithm is based on three original features. First, <it>BiMine </it>relies on a new evaluation function called <it>Average Spearman's rho </it>(ASR). Second, <it>BiMine </it>uses a new tree structure, called <it>Bicluster Enumeration Tree </it>(BET), to represent the different biclusters discovered during the enumeration process. Third, to avoid the combinatorial explosion of the search tree, <it>BiMine </it>introduces a parametric rule that allows the enumeration process to cut tree branches that cannot lead to good biclusters.</p> <p>Results</p> <p>The performance of the proposed algorithm is assessed using both synthetic and real DNA microarray data. The experimental results show that <it>BiMine </it>competes well with several other biclustering methods. Moreover, we test the biological significance using a gene annotation web-tool to show that our proposed method is able to produce biologically relevant biclusters. The software is available upon request from the authors to academic users.</p

    CD24 Expression is an Independent Prognostic Marker in Cholangiocarcinoma

    Get PDF
    CD24 has been described as an adverse prognostic marker in several malignancies. This study evaluates CD24 expression in cholangiocarcinoma and correlates the findings with clinicopathologic data and patient survival. Between 1996 and 2002, 22 consecutive patients with cholangiocarcinoma were treated at our institution. Demographic data, SEER stage, pathologic data, treatment, expression of CD24, mitogen-activated protein kinase (MAPK), phosphorylated MAPK, and survival were analyzed. The majority of the tumors demonstrated CD24 (81.8%) and p-MAPK (87%) expression. A negative association was noted between the expression of CD24 and p-MAPK. Median survival for patients with low expression of CD24 was 36 months and high expression was 8 months. Median survival for patients who received chemotherapy with low CD24 expression was 163 months, and for seven patients with high CD24 expression, it was 17 months (p = 0.04). With the addition of radiation therapy, median survival for patients with low expression of CD24 was 52 months and high expression was 17 months (p = 0.08). On multivariate analysis, the use of chemotherapy (p = 0.0014, hazard ratio 0.069) and the CD24 overexpression (p = 0.02, hazard ratio 7.528) were predictive of survival. CD24 is commonly expressed in cholangiocarcinoma, and overexpression is predictive of poor survival and possibly of lack of response to chemotherapy and radiation therapy. These findings may improve selection of patients for the appropriate treatment modality and the development of CD24-targeted therapy

    Influence of Various Polymorphic Variants of Cytochrome P450 Oxidoreductase (POR) on Drug Metabolic Activity of CYP3A4 and CYP2B6

    Get PDF
    Cytochrome P450 oxidoreductase (POR) is known as the sole electron donor in the metabolism of drugs by cytochrome P450 (CYP) enzymes in human. However, little is known about the effect of polymorphic variants of POR on drug metabolic activities of CYP3A4 and CYP2B6. In order to better understand the mechanism of the activity of CYPs affected by polymorphic variants of POR, six full-length mutants of POR (e.g., Y181D, A287P, K49N, A115V, S244C and G413S) were designed and then co-expressed with CYP3A4 and CYP2B6 in the baculovirus-Sf9 insect cells to determine their kinetic parameters. Surprisingly, both mutants, Y181D and A287P in POR completely inhibited the CYP3A4 activity with testosterone, while the catalytic activity of CYP2B6 with bupropion was reduced to approximately ∼70% of wild-type activity by Y181D and A287P mutations. In addition, the mutant K49N of POR increased the CLint (Vmax/Km) of CYP3A4 up to more than 31% of wild-type, while it reduced the catalytic efficiency of CYP2B6 to 74% of wild-type. Moreover, CLint values of CYP3A4-POR (A115V, G413S) were increased up to 36% and 65% of wild-type respectively. However, there were no appreciable effects observed by the remaining two mutants of POR (i.e., A115V and G413S) on activities of CYP2B6. In conclusion, the extent to which the catalytic activities of CYP were altered did not only depend on the specific POR mutations but also on the isoforms of different CYP redox partners. Thereby, we proposed that the POR-mutant patients should be carefully monitored for the activity of CYP3A4 and CYP2B6 on the prescribed medication

    Dectin-1 isoforms contribute to distinct Th1/Th17 cell activation in mucosal candidiasis

    Get PDF
    We thank Dr. Cristina Massi Benedetti for digital art and editingRecognition of β-glucans by dectin-1 has been shown to mediate cell activation, cytokine production and a variety of antifungal responses. Here, we report that the functional activity of dectin-1 in mucosal immunity to Candida albicans is influenced by the genetic background of the host. Dectin-1 was required for the proper control of gastrointestinal and vaginal candidiasis in C57BL/6 but not BALB/c mice, the latter actually showing increased resistance in the absence of dectin-1. Susceptibility of dectin-1-deficient C57BL/6 mice to infection was associated with defective IL-17A, aryl hydrocarbon receptor-dependent IL-22 production as well as adaptive Th1 responses. In contrast, resistance of dectin-1-deficient BALB/c mice was associated with increased IL-17A and IL-22 production, and the skewing towards Th1/Treg immune responses that provide immunological memory. Disparate canonical/noncanonical NF-κB signaling pathways downstream dectin-1were activated in the two different mouse strains. Thus, the net activity of dectin-1 in antifungal mucosal immunity is dependent on the host’s genetic background that affects both the innate cytokine production as well as the adaptive Th1/Th17 cell activation upon dectin-1 signaling.The studies were supported by the Specific Targeted Research Project “ALLFUN” (FP7−HEALTH−2009 contract number 260338 to LR) and the Italian Project AIDS 2010 by ISS (Istituto Superiore di Sanità - contract number 40H40 to LR) and Fondazione Cassa di Risparmio di Perugia Project n. 2011.0124.021. AC and CC were financially supported by fellowships from Fundação para a Ciência e Tecnologia, Portugal (contracts SFRH/BPD/46292/2008 and SFRH/BD/65962/2009, respectively)
    corecore