47 research outputs found
Cross-Sectional Serological Survey of Human Fascioliasis in Haiti
Fasciola hepatica, the aetiological agent of fascioliasis in the Caribbean region, occurs throughout the major islands of the Greater Antilles and in localised zones on two islands (Martinique and Saint Lucia) of the Lesser Antilles. However, apart from Puerto Rico, information regarding human fascioliasis in islands of the Caribbean is out of date or unavailable, or even nonexistent as in Haiti. The authors conducted a retrospective, cross-sectional serological survey in Port-au-Prince using a Western blotting test (LDBIO Diagnostics) on human fascioliasis in Haiti. A total of 216 serum samples obtained from apparently healthy adults were tested. The frequency of antibodies in serum samples of the study population was 6.5% (14/216). The immunodominant bands recognised in Western blots were 27-28 kDa (100%), 42 kDa (64%), 60 kDa, and 8-9 kDa (28%). This is the first survey to reveal a relatively low proportion of asymptomatic F. hepatica-infected humans in Haiti
Childhood Cryptosporidiosis: A Case Report
Cryptosporidium has emerged as an important cause of diarrheal illness worldwide, especially amongst young children and patients with infectious or iatrogenic immune deficiencies. The authors describe a case of mild cryptosporidiosis in a well-nourished, immunocompetent, one-year-old child. Rapid clinical and parasitological improvement was observed after a 3-day course of nitazoxanide
Geometric least squares means ratios for the analysis of Plasmodium falciparum in vitro susceptibility to antimalarial drugs
<p>Abstract</p> <p>Background</p> <p>The susceptibility of microbes such as <it>Plasmodium falciparum </it>to drugs is measured in vitro as the concentration of the drug achieving 50% of maximum effect (IC<sub>50</sub>); values from a population are summarized as geometric means. For antimalarial drugs, as well as for antibiotics, assessing changes in microbe susceptibility over time under drug pressure would help inform treatment policy decisions, but no standard statistical method exists as yet.</p> <p>Methods</p> <p>A mixed model was generated on log<sub>e</sub>-transformed IC<sub>50 </sub>values and calculated geometric least squares means (GLSM) with 90% confidence intervals (CIs). In order to compare IC<sub>50</sub>s between years, GLSM ratios (GLSMR) with 90%CIs were calculated and, when both limits of the 90%CIs were below or above 100%, the difference was considered statistically significant. Results were compared to those obtained from ANOVA and a generalized linear model (GLM).</p> <p>Results</p> <p>GLSMRs were more conservative than ANOVA and resulted in lower levels of statistical significance. The GLSMRs approach allowed for random effect and adjustment for multiple comparisons. GLM was limited in the number of year-to-year comparisons by the need for a single reference year. The three analyses yielded generally consistent results.</p> <p>Conclusion</p> <p>A robust analytical method can palliate inherent limitations of in vitro sensitivity testing. The random effects GLSMRs with adjustment for multiple comparisons and 90%CIs require only assumptions on the mixed model to be applied. Results are easy to display graphically and to interpret. The GLMSRs should be considered as an option for monitoring changes in drug susceptibility of <it>P. falciparum </it>malaria and other microbes.</p
Understanding Human-Plasmodium falciparum Immune Interactions Uncovers the Immunological Role of Worms
BACKGROUND: Former studies have pointed to a monocyte-dependent effect of antibodies in protection against malaria and thereby to cytophilic antibodies IgG1 and IgG3, which trigger monocyte receptors. Field investigations have further documented that a switch from non-cytophilic to cytophilic classes of antimalarial antibodies was associated with protection. The hypothesis that the non-cytophilic isotype imbalance could be related to concomittant helminthic infections was supported by several interventions and case-control studies. METHODS AND FINDINGS: We investigated here the hypothesis that the delayed acquisition of immunity to malaria could be related to a worm-induced Th2 drive on antimalarial immune responses. IgG1 to IgG4 responses against 6 different parasite-derived antigens were analyzed in sera from 203 Senegalese children, half carrying intestinal worms, presenting 421 clinical malaria attacks over 51 months. Results show a significant correlation between the occurrence of malaria attacks, worm carriage (particularly that of hookworms) and a decrease in cytophilic IgG1 and IgG3 responses and an increase in non-cytophilic IgG4 response to the merozoite stage protein 3 (MSP3) vaccine candidate. CONCLUSION: The results confirm the association with protection of anti-MSP3 cytophilic responses, confirm in one additional setting that worms increase malaria morbidity and show a Th2 worm-driven pattern of anti-malarial immune responses. They document why large anthelminthic mass treatments may be worth being assessed as malaria control policies
Trends in malaria morbidity following the introduction of artesunate plus amodiaquine combination in M'lomp village dispensary, south-western Senegal
BACKGROUND: In Thailand, South Africa and Zanzibar, a decrease in malaria morbidity was observed following the introduction of artemisinin-based combination therapy (ACT). In Senegal, therapeutic trials supervised the in vivo efficacy of artesunate plus amodiaquine from 1999 to 2005 at the M'lomp village dispensary. The trends in malaria morbidity in this village were evaluated from 2000 to 2002. METHODS: Each year, between July and December inclusive, fevers treated with antimalarials and slide-proven, uncomplicated malaria cases were collected from dispensary health records. Data were also collected in 1998, just prior to ACT introduction. Pearson's chi square tests and Student tests were used to compare two percentages or two means respectively (alpha = 0.05). RESULTS: Between 1998 and 2002, the total number of fevers treated with antimalarials and their repetitiveness progressively decreased: From 2824 to 945 fevers and from 17.6% to 9.7% (RR1998-2002 = 0.55; [0.44-0.69]; p < 0.0001) respectively. Considering uncomplicated malaria cases only, a decrease was observed in their total number between 2001 and 2002, from 953 to 570 cases. The incidence rate and repetitiveness also decreased. The incidence rate fell from 46.1% in 2001 to 37.5% in 2002 (p < 0.0001) and the repetitiveness decreased from 13.0% in 2000 to 6.6% in 2002 (RR2000-2002 = 0.51; [0.35-0.72]; p = 0.0001). CONCLUSION: The percentage of uncomplicated malaria cases treated with ACT increased, from 18.9% in 2000 to 64.0% in 2002, making it tempting to conclude an impact on malaria morbidity. Nonetheless, the decline in incidence rate of uncomplicated malaria was slight and a lower recorded rainfall was reported in 2002 which could also explain this decline. The context in which ACT is introduced affects the impact on malaria morbidity. In M'lomp, in contrast to studies in Thailand, South Africa and Zanzibar, ACT coverage of malaria cases was low and no vector control measure was deployed. Moreover, the malaria transmission level is higher. In sub-Saharan countries, in order to optimize the impact on malaria morbidity, ACT deployment must be supported, on the one hand, by a strengthening of public health system to ensure a high ACT coverage and, on the other hand, by others measures, such vector control measures
The efficacy and safety of a new fixed-dose combination of amodiaquine and artesunate in young African children with acute uncomplicated Plasmodium falciparum
<p>Abstract</p> <p>Background</p> <p>Artesunate (AS) plus amodiaquine (AQ) is one artemisinin-based combination (ACT) recommended by the WHO for treating <it>Plasmodium falciparum </it>malaria. Fixed-dose AS/AQ is new, but its safety and efficacy are hitherto untested.</p> <p>Methods</p> <p>A randomized, open-label trial was conducted comparing the efficacy (non-inferiority design) and safety of fixed (F) dose AS (25 mg)/AQ (67.5 mg) to loose (L) AS (50 mg) + AQ (153 mg) in 750, <it>P</it>. <it>falciparum</it>-infected children from Burkina Faso aged 6 months to 5 years. Dosing was by age. Primary efficacy endpoint was Day (D) 28, PCR-corrected, parasitological cure rate. Recipients of rescue treatment were counted as failures and new infections as cured. Documented, common toxicity criteria (CTC) graded adverse events (AEs) defined safety.</p> <p>Results</p> <p>Recruited and evaluable children numbered 750 (375/arm) and 682 (90.9%), respectively. There were 8 (AS/AQ) and 6 (AS+AQ) early treatment failures and one D7 failure (AS+AQ). Sixteen (AS/AQ) and 12 (AS+AQ) patients had recurrent parasitaemia (PCR new infections 10 and 6, respectively). Fourteen patients per arm required rescue treatment for vomiting/spitting out study drugs. Efficacy rates were 92.1% in both arms: AS/AQ = 315/342 (95% CI: 88.7–94.7) vs. AS+AQ = 313/340 (95% CI: 88.6–94.7). Non-inferiority was demonstrated at two-sided α = 0.05: Δ (AS+AQ – AS/AQ) = 0.0% (95% CI: -4.1% to 4.0%). D28, Kaplan Meier PCR-corrected cure rates (all randomized children) were similar: 93.7% (AS/AQ) vs. 93.2% (AS+AQ) Δ = -0.5 (95% CI -4.2 to 3.0%). By D2, both arms had rapid parasite (F & L, 97.8% aparasitaemic) and fever (97.2% [F], 96.0% [L] afebrile) clearances.</p> <p>Both treatments were well tolerated. Drug-induced vomiting numbered 8/375 (2.1%) and 6/375 (1.6%) in the fixed and loose arms, respectively (<it>p </it>= 0.59). One patient developed asymptomatic, CTC grade 4 hepatitis (AST 1052, ALT 936). Technical difficulties precluded the assessment and risk of neutropaenia for all patients.</p> <p>Conclusion</p> <p>Fixed dose AS/AQ was efficacious and well tolerated. These data support the use of this new fixed dose combination for treating <it>P. falciparum </it>malaria with continued safety monitoring.</p> <p>Trial registration</p> <p>Current Controlled Trials ISRCTN07576538</p
The costs of introducing artemisinin-based combination therapy: evidence from district-wide implementation in rural Tanzania
BACKGROUND\ud
\ud
The development of antimalarial drug resistance has led to increasing calls for the introduction of artemisinin-based combination therapy (ACT). However, little evidence is available on the full costs associated with changing national malaria treatment policy. This paper presents findings on the actual drug and non-drug costs associated with deploying ACT in one district in Tanzania, and uses these data to estimate the nationwide costs of implementation in a setting where identification of malaria cases is primarily dependant on clinical diagnosis.\ud
\ud
METHODS\ud
\ud
Detailed data were collected over a three year period on the financial costs of providing ACT in Rufiji District as part of a large scale effectiveness evaluation, including costs of drugs, distribution, training, treatment guidelines and other information, education and communication (IEC) materials and publicity. The district-level costs were scaled up to estimate the costs of nationwide implementation, using four scenarios to extrapolate variable costs.\ud
\ud
RESULTS\ud
\ud
The total district costs of implementing ACT over the three year period were slightly over one million USD, with drug purchases accounting for 72.8% of this total. The composite (best) estimate of nationwide costs for the first three years of ACT implementation was 48.3 million USD (1.29 USD per capita), which varied between 21 and 67.1 million USD in the sensitivity analysis (2003 USD). In all estimates drug costs constituted the majority of total costs. However, non-drug costs such as IEC materials, drug distribution, communication, and health worker training were also substantial, accounting for 31.4% of overall ACT implementation costs in the best estimate scenario. Annual implementation costs are equivalent to 9.5% of Tanzania's recurrent health sector budget, and 28.7% of annual expenditure on medical supplies, implying a 6-fold increase in the national budget for malaria treatment.\ud
\ud
CONCLUSION\ud
\ud
The costs of implementing ACT are substantial. Although drug purchases constituted a majority of total costs, non-drug costs were also considerable. It is clear that substantial external resources will be required to facilitate and sustain effective ACT delivery across Tanzania and other malaria-endemic countries
Efficacy of artesunate-amodiaquine for treating uncomplicated falciparum malaria in sub-Saharan Africa: a multi-centre analysis
BACKGROUND: Artesunate and amodiaquine (AS&AQ) is at present the world's second most widely used artemisinin-based combination therapy (ACT). It was necessary to evaluate the efficacy of ACT, recently adopted by the World Health Organization (WHO) and deployed over 80 countries, in order to make an evidence-based drug policy. METHODS: An individual patient data (IPD) analysis was conducted on efficacy outcomes in 26 clinical studies in sub-Saharan Africa using the WHO protocol with similar primary and secondary endpoints. RESULTS: A total of 11,700 patients (75% under 5 years old), from 33 different sites in 16 countries were followed for 28 days. Loss to follow-up was 4.9% (575/11,700). AS&AQ was given to 5,897 patients. Of these, 82% (4,826/5,897) were included in randomized comparative trials with polymerase chain reaction (PCR) genotyping results and compared to 5,413 patients (half receiving an ACT). AS&AQ and other ACT comparators resulted in rapid clearance of fever and parasitaemia, superior to non-ACT. Using survival analysis on a modified intent-to-treat population, the Day 28 PCR-adjusted efficacy of AS&AQ was greater than 90% (the WHO cut-off) in 11/16 countries. In randomized comparative trials (n = 22), the crude efficacy of AS&AQ was 75.9% (95% CI 74.6-77.1) and the PCR-adjusted efficacy was 93.9% (95% CI 93.2-94.5). The risk (weighted by site) of failure PCR-adjusted of AS&AQ was significantly inferior to non-ACT, superior to dihydroartemisinin-piperaquine (DP, in one Ugandan site), and not different from AS+SP or AL (artemether-lumefantrine). The risk of gametocyte appearance and the carriage rate of AS&AQ was only greater in one Ugandan site compared to AL and DP, and lower compared to non-ACT (p = 0.001, for all comparisons). Anaemia recovery was not different than comparator groups, except in one site in Rwanda where the patients in the DP group had a slower recovery. CONCLUSION: AS&AQ compares well to other treatments and meets the WHO efficacy criteria for use against falciparum malaria in many, but not all, the sub-Saharan African countries where it was studied. Efficacy varies between and within countries. An IPD analysis can inform general and local treatment policies. Ongoing monitoring evaluation is required
Plasmodium falciparum In Vitro Susceptibility to Antimalarial Drugs in Casamance (Southwestern Senegal) during the First 5 Years of Routine Use of Artesunate-Amodiaquine
We have monitored the in vitro sensitivities of Plasmodium falciparum isolates predeployment and during the deployment of artesunate plus amodiaquine treatment in Mlomp, Casamance (southwestern Senegal) during 2000 to 2004. Parasites remained susceptible to both drugs. Chloroquine resistance levels were high but stable. Quinine continues to be effective