1,849 research outputs found
A New Duality Between Superconformal Field Theories in Three Dimensions
We propose a new duality between two 3d superconformal
Chern-Simons-matter theories: the ABJM theory and a
theory consisting of the product between the BLG theory and a free theory of
eight real scalars and eight Majorana fermions. As evidence supporting this
duality, we show that the moduli spaces, superconformal indices,
partition functions, and certain OPE coefficients of BPS operators in the two
theories agree.Comment: 29 pages, 2 figure
Solving M-theory with the Conformal Bootstrap
We use the conformal bootstrap to perform a precision study of 3d maximally
supersymmetric () SCFTs that describe the IR physics on
coincident M2-branes placed either in flat space or at a \C^4/\Z_2
singularity. First, using the explicit Lagrangians of ABJ(M)
\cite{Aharony:2008ug,Aharony:2008gk} and recent supersymmetric localization
results, we calculate certain half and quarter-BPS OPE coefficients, both
exactly at small , and approximately in a large expansion that we
perform to all orders in . Comparing these values with the numerical
bootstrap bounds leads us to conjecture that some of these theories obey an OPE
coefficient minimization principle. We then use this conjecture as well as the
extremal functional method to reconstruct the first few low-lying scaling
dimensions and OPE coefficients for both protected and unprotected multiplets
that appear in the OPE of two stress tensor multiplets for all values of .
We also calculate the half and quarter-BPS operator OPE coefficients in the
BLG theory for all values of the Chern-Simons
coupling , and show that generically they do not obey the same OPE
coefficient minimization principle.Comment: 30 pages, 5 figures, v2 submitted for publicatio
Emergence of Periodic Structure from Maximizing the Lifetime of a Bound State Coupled to Radiation
Consider a system governed by the time-dependent Schr\"odinger equation in
its ground state. When subjected to weak (size ) parametric forcing
by an "ionizing field" (time-varying), the state decays with advancing time due
to coupling of the bound state to radiation modes. The decay-rate of this
metastable state is governed by {\it Fermi's Golden Rule}, , which
depends on the potential and the details of the forcing. We pose the
potential design problem: find which minimizes (maximizes
the lifetime of the state) over an admissible class of potentials with fixed
spatial support. We formulate this problem as a constrained optimization
problem and prove that an admissible optimal solution exists. Then, using
quasi-Newton methods, we compute locally optimal potentials. These have the
structure of a truncated periodic potential with a localized defect. In
contrast to optimal structures for other spectral optimization problems, our
optimizing potentials appear to be interior points of the constraint set and to
be smooth. The multi-scale structures that emerge incorporate the physical
mechanisms of energy confinement via material contrast and interference
effects.
An analysis of locally optimal potentials reveals local optimality is
attained via two mechanisms: (i) decreasing the density of states near a
resonant frequency in the continuum and (ii) tuning the oscillations of
extended states to make , an oscillatory integral, small. Our
approach achieves lifetimes, , for locally
optimal potentials with as compared with
for a typical potential. Finally, we
explore the performance of optimal potentials via simulations of the
time-evolution.Comment: 33 pages, 6 figure
Gravitational waves in general relativity: XIV. Bondi expansions and the ``polyhomogeneity'' of \Scri
The structure of polyhomogeneous space-times (i.e., space-times with metrics
which admit an expansion in terms of ) constructed by a
Bondi--Sachs type method is analysed. The occurrence of some log terms in an
asymptotic expansion of the metric is related to the non--vanishing of the Weyl
tensor at Scri. Various quantities of interest, including the Bondi mass loss
formula, the peeling--off of the Riemann tensor and the Newman--Penrose
constants of motion are re-examined in this context.Comment: LaTeX, 28pp, CMA-MR14-9
Sharp spectral stability estimates via the Lebesgue measure of domains for higher order elliptic operators
We prove sharp stability estimates for the variation of the eigenvalues of
non-negative self-adjoint elliptic operators of arbitrary even order upon
variation of the open sets on which they are defined. These estimates are
expressed in terms of the Lebesgue measure of the symmetric difference of the
open sets. Both Dirichlet and Neumann boundary conditions are considered
On thin plate spline interpolation
We present a simple, PDE-based proof of the result [M. Johnson, 2001] that
the error estimates of [J. Duchon, 1978] for thin plate spline interpolation
can be improved by . We illustrate that -matrix
techniques can successfully be employed to solve very large thin plate spline
interpolation problem
Eigenfunctions decay for magnetic pseudodifferential operators
We prove rapid decay (even exponential decay under some stronger assumptions)
of the eigenfunctions associated to discrete eigenvalues, for a class of
self-adjoint operators in defined by ``magnetic''
pseudodifferential operators (studied in \cite{IMP1}). This class contains the
relativistic Schr\"{o}dinger operator with magnetic field
Motion of Isolated bodies
It is shown that sufficiently smooth initial data for the Einstein-dust or
the Einstein-Maxwell-dust equations with non-negative density of compact
support develop into solutions representing isolated bodies in the sense that
the matter field has spatially compact support and is embedded in an exterior
vacuum solution
Hardy-Carleman Type Inequalities for Dirac Operators
General Hardy-Carleman type inequalities for Dirac operators are proved. New
inequalities are derived involving particular traditionally used weight
functions. In particular, a version of the Agmon inequality and Treve type
inequalities are established. The case of a Dirac particle in a (potential)
magnetic field is also considered. The methods used are direct and based on
quadratic form techniques
- …