90 research outputs found
Searching for OH maser emission towards the MIPSGAL compact Galactic bubbles
We conducted radio observations searching for OH 18-cm maser emission from a
sample of 169 unclassified MIPSGAL compact Galactic bubbles. These sources are
thought to be the circumstellar envelopes of different kinds of evolved stars.
Our observations were aimed at shedding light on the nature of MIPSGAL bubbles,
since their characterisation is a fundamental aid for the development of
accurate physical models of stellar and Galaxy evolution. The maser emission is
observatively linked to the last stages of the life of low- and
intermediate-mass stars, which may constitute a significant fraction of the
MIPSGAL bubbles. In particular OH masers are usually observed towards post-AGB
stars. Our observations were performed with the Green Bank Telescope and, for
each source, produced spectra around the four OH 18-cm transitions. The
observations were compared with archive interferometer data in order to exclude
possible contamination from nearby sources. The main result is that the OH
maser emission is not a common feature among the MIPSGAL bubbles, with only one
certain detection. We conclude that among the MIPSGAL bubbles the post-AGB
stars could be very rare
Expanded Very Large Array Observations of the Nebula Around G79.29+0.46
We have observed the radio nebula surrounding the Galactic luminous blue variable candidate G79.29+0.46 with the Expanded Very Large Array (EVLA) at 6 cm. These new radio observations allow a morphological comparison between the radio emission, which traces the ionized gas component, and the mid-IR emission, a tracer of the dust component. The InfraRed Array Camera (8 μm) and the Multiband Imaging Photometer for Spitzer (24 μm and 70 μm) images have been reprocessed and compared with the EVLA map. We confirm the presence of a second shell at 24 μm and also provide evidence for its detection at 70 μm. The differences between the spatial morphology of the radio and mid-IR maps indicate the existence of two dust populations, the cooler one emitting mostly at longer wavelengths. Analysis of the two dusty, nested shells have provided us with an estimate of the characteristic timescales for shell ejection, providing important constraints for stellar evolutionary models. Finer details of the ionized gas distribution can be appreciated thanks to the improved quality of the new 6 cm image, most notably the highly structured texture of the nebula. Evidence of interaction between the nebula and the surrounding interstellar medium can be seen in the radio map, including brighter features that delineate regions where the shell structure is locally modified. In particular, the brighter filaments in the southwest region appear to frame the shocked southwestern clump reported from CO observations
Exploring the multifaceted circumstellar environment of the luminous blue variable HR Carinae
Indexación: Web of Science; Scopus.We present a multiwavelength study of the Galactic luminous blue variable HR Carinae, based on new high-resolution mid-infrared (IR) and radio images obtained with the Very Large Telescope (VLT) and the Australia Telescope Compact Array (ATCA), which have been complemented by far-infrared Herschel-Photodetector Array Camera and Spectrometer (PACS) observations and ATCA archive data. The Herschel images reveal the large-scale distribution of the dusty emitting nebula, which extends mainly to the north-east direction, up to 70 arcsec from the central star, and is oriented along the direction of the space motion of the star. In the mid-infrared images, the brightness distribution is characterized by two arcshaped structures, tracing an inner envelope surrounding the central star more closely. At radio wavelengths, the ionized gas emission lies on the opposite side of the cold dust with respect to the position of the star, as if the ionized front were confined by the surrounding medium in the north-south direction. Comparison with previous data indicates significant changes in the radio nebula morphology and in the mass-loss rate from the central star, which has increased from 6.1 × 10-6M⊙ yr-1 in 1994-1995 to 1.17 × 10-5M⊙ yr-1 in 2014. We investigate possible scenarios that could have generated the complex circumstellar environment revealed by our multiwavelength data.https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stw307
New ATCA, ALMA and VISIR observations of the candidate LBV SK-67266 (S61): the nebular mass from modelling 3D density distributions
We present new observations of the nebula around the Magellanic candidate
Luminous Blue Variable S61. These comprise high-resolution data acquired with
the Australia Telescope Compact Array (ATCA), the Atacama Large
Millimetre/Submillimetre Array (ALMA), and VISIR at the Very Large Telescope
(VLT). The nebula was detected only in the radio, up to 17 GHz. The 17 GHz ATCA
map, with 0.8 arcsec resolution, allowed a morphological comparison with the
H Hubble Space Telescope image. The radio nebula resembles a spherical
shell, as in the optical. The spectral index map indicates that the radio
emission is due to free-free transitions in the ionised, optically thin gas,
but there are hints of inhomogeneities. We present our new public code RHOCUBE
to model 3D density distributions, and determine via Bayesian inference the
nebula's geometric parameters. We applied the code to model the electron
density distribution in the S61 nebula. We found that different distributions
fit the data, but all of them converge to the same ionised mass, ~0.1 , which is an order of magnitude smaller than previous estimates. We
show how the nebula models can be used to derive the mass-loss history with
high-temporal resolution. The nebula was probably formed through stellar winds,
rather than eruptions. From the ALMA and VISIR non-detections, plus the derived
extinction map, we deduce that the infrared emission observed by space
telescopes must arise from extended, diffuse dust within the ionised region.Comment: 17 pages, 9 figures. Authors list corrected. In press in MNRAS.
RHOCUBE code available online ( https://github.com/rnikutta/rhocube
Spectroscopic and photometric oscillatory envelope variability during the S Doradus outburst of the Luminous Blue Variable R71
To better understand the LBV phenomenon, we analyze multi-epoch and
multi-wavelength spectra and photometry of R71. Pre-outburst spectra are
analyzed with the radiative transfer code CMFGEN to determine the star's
fundamental stellar parameters. During quiescence, R71 has an effective
temperature of and a luminosity of
log = 5.78 and is thus a classical LBV, but at the lower
luminosity end of this group. We determine its mass-loss rate to yr. We present R71's spectral energy distribution
from the near-ultraviolet to the mid-infrared during its present outburst.
Mid-infrared observations suggest that we are witnessing dust formation and
grain evolution. Semi-regular oscillatory variability in the star's light curve
is observed during the current outburst. Absorption lines develop a second blue
component on a timescale twice that length. The variability may consist of one
(quasi-)periodic component with P ~ 425/850 d with additional variations
superimposed. During its current S Doradus outburst, R71 occupies a region in
the HR diagram at the high-luminosity extension of the Cepheid instability
strip and exhibits similar irregular variations as RV Tau variables. LBVs do
not pass the Cepheid instability strip because of core evolution, but they
develop comparable cool, low-mass, extended atmospheres in which convective
instabilities may occur. As in the case of RV Tau variables, the occurrence of
double absorption lines with an apparent regular cycle may be due to shocks
within the atmosphere and period doubling may explain the factor of two in the
lengths of the photometric and spectroscopic cycles.Comment: 18 pages, 14 figures, submitted to A&
The polarization mode of the auroral radio emission from the early-type star HD142301
We report the detection of the auroral radio emission from the early-type
magnetic star HD142301. New VLA observations of HD142301 detected highly
polarized amplified emission occurring at fixed stellar orientations. The
coherent emission mechanism responsible for the stellar auroral radio emission
amplifies the radiation within a narrow beam, making the star where this
phenomenon occurs similar to a radio lighthouse. The elementary emission
process responsible for the auroral radiation mainly amplifies one of the two
magneto-ionic modes of the electromagnetic wave. This explains why the auroral
pulses are highly circularly polarized. The auroral radio emission of HD142301
is characterized by a reversal of the sense of polarization as the star
rotates. The effective magnetic field curve of HD142301 is also available
making it possible to correlate the transition from the left to the right-hand
circular polarization sense (and vice-versa) of the auroral pulses with the
known orientation of the stellar magnetic field. The results presented in this
letter have implications for the estimation of the dominant magneto-ionic mode
amplified within the HD142301 magnetosphere.Comment: 5 pages, 4 figures; accepted to MNRAS Letter
SCORPIO-II: Spectral indices of weak Galactic radio sources
In the next few years the classification of radio sources observed by the
large surveys will be a challenging problem, and spectral index is a powerful
tool for addressing it. Here we present an algorithm to estimate the spectral
index of sources from multiwavelength radio images. We have applied our
algorithm to SCORPIO (Umana et al. 2015), a Galactic Plane survey centred
around 2.1 GHz carried out with ATCA, and found we can measure reliable
spectral indices only for sources stronger than 40 times the rms noise. Above a
threshold of 1 mJy, the source density in SCORPIO is 20 percent greater than in
a typical extra-galactic field, like ATLAS (Norris et al. 2006), because of the
presence of Galactic sources. Among this excess population, 16 sources per
square degree have a spectral index of about zero, suggesting optically thin
thermal emission such as Hii regions and planetary nebulae, while 12 per square
degree present a rising spectrum, suggesting optically thick thermal emission
such as stars and UCHii regions.Comment: 12 pages, 11 figures, accepted by MNRA
The candidate luminous blue variable G79.29+0.46: a comprehensive study of its ejecta through a multiwavelength analysis
We present a multiwavelength analysis of the nebula around the candidate luminous blue variable G79.29+0.46. The study is based on our radio observations performed at the Expanded Very Large Array and at the Green Bank Telescope and on archival infrared data sets, including recent images obtained by the Herschel Space Observatory. We confirm that the radio central object is characterized by a stellar wind and we derive a current mass-loss rate of about 1.4 × 10^(−6 )M_⊙ yr^(−1). We find the presence of a dusty compact envelope close to the star, with a temperature between ∼40 and 1200 K. We estimate for the outer ejecta an ionized gas mass of 1.51 M_⊙ and a warm (60–85 K) dust mass of 0.02 M_⊙. Diagnostics of the far-infrared spectra indicate the presence of a photodissociation region around the ionized gas. Finally, we model the nebula with the photoionization code cloudy, using as input parameters those estimated from our analysis. We find for the central star a luminosity of 10^(5.4) L_⊙ and an effective temperature of 20.4 kK
The Luminous Blue Variable RMC127 as seen with ALMA and ATCA
We present ALMA and ATCA observations of the luminous blue variable \rmc. The
radio maps show for the first time the core of the nebula and evidence that the
nebula is strongly asymmetric with a Z-pattern shape. Hints of this morphology
are also visible in the archival \emph{HST} image, which overall
resembles the radio emission. The emission mechanism in the outer nebula is
optically thin free-free in the radio. At high frequencies, a component of
point-source emission appears at the position of the star, up to the ALMA
frequencies. The rising flux density distribution () of this object suggests thermal emission from the ionized
stellar wind and indicates a departure from spherical symmetry with
. We examine different scenarios to explain this excess
of thermal emission from the wind and show that this can arise from a bipolar
outflow, supporting the suggestion by other authors that the stellar wind of
\rmc is aspherical. We fit the data with two collimated ionized wind models and
we find that the mass-loss rate can be a factor of two or more smaller than in
the spherical case. We also fit the photometry obtained by IR space telescopes
and deduce that the mid- to far-IR emission must arise from extended, cool
() dust within the outer ionized nebula. Finally we discuss two
possible scenarios for the nebular morphology: the canonical single star
expanding shell geometry, and a precessing jet model assuming presence of a
companion star.Comment: Accepted for publication in ApJ (minor revision included
- …